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LA-SALLE'S INVARIANCE PRINCIPLE
AND METHOD OF SEMI DEFINITE FUNCTIONS*

B crarbe «[IpuHumn naBapraHTHOCTH JIsI-Cajlis 1 MeTo 3HAKOITOCTOSIHHBIX (DyHKIIMiA JIsrmy-
HOBa» MCCJIEIOBAHbI MTPUTSIKEHWE M YCTONYMBOCTh MHBAPUAHTHBIX MHOXECTB IMHAMUYECKUX CHUC-
TeM MetomoM ¢yHKimi JlsmyHoBa. [loka3aHo, YTO M3BECTHBI MPUHLMUIT WHBApUaHTHOCTH JIsi-
Camnsa [1] MOXeT rapaHTMpPOBaThb CBOWCTBO YCTOWYMBOCTH JIMILb B ClIydae, KOTJa MCIIOJIb3yemast
BCIToMoraTesibHasi (DyHKIIMsI SIBJISIETCSI 3HAKOITOCTOSIHHOM WJIM 3HaKoompeaeaeHHoit. JlaeTcst cpaB-
HEHHeE IBYX METOIOB UCCJIEA0BaHMUS AMHAMUYECKHUX CHCTEM.

La-Salle's invariance principle, originally proved for systems of ordinary diffe-
rential equations [1], has received further development for abstract dynamical sys-
tems [2-5] and can be regarded as a method of localization of positive limit sets with
the help of continuous or semi-continuous functions (called Lyapunov functions).
These functions have a derivative along the trajectories of the considered system with
is non positive. The positive limit set can be found in the greatest invariant subset
contained in the set of points where the derivative of the Lyapunov functional van-
ishes. The solution of a problem of localization essentially will use topological and
dynamical properties of positive semi-trajectories and positive limit sets.

From this theorem of localization follows (with the same auxiliary Lyapunov
function) the theorem of the Lyapunov's second method about stability or asymptotic
stability and, as far as we are concerned with this question, the applicable results
known up to the present time make use of definite or semi-definite Lyapunov's func-
tions. So, we have an open problem: which minimal properties should have a
Lyapunov's function, in terms of sign, in the study of the stability. The answer to this
problem for dynamical systems on locally compact metric space makes the purpose
of the present work. Below, we show that under the conditions of the application of
the La-Salle's invariance principle, the Lyapunov's function is necessarily semi-
definite positive in presence of an asymptotically stable equilibrium.

1. Preliminaries. Let (X, d) be a metric space; recall that the continuous mapping

defines a dynamical system if:

In the sequel, we will say that the triple is a dynamical system [6] and
we always assume that X is locally compact. Clearly this notion of dynamical system
generalizes the notion of solution of an autonomous ordinary differential equation.

* TekcT cTaThy MYOMMKYETCST B ABTOPCKOUN PeIAKITNN.
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1.1. Some notations. Given a dynamical system and (x, ) in we
will write xt in place of Given r= X we will denote by

The set of w-limit points (resp. o-limit points) of x is denoted by (resp.

A point y belongs to (resp. if end only if there exists a sequence of

scalars (t,)n>0 such that

1.2. Stable and attractive sets. A subset S of Xis said positively invariant (resp.
negative invariant) if : The following definition
generalizes the notion of stability and attraction of an equilibrium.

Definition 1. Let M be a compact subset of X, we will say that M is

* stable if every neighborhood of M contains a positively invariant neighborhood
of M or, equivalently, if

where B(M, r) - is an open neighborhood of M and, if .S is a subset
of
« attractive if the setA*(M)={xe X : L'(x)# @ and L*(x)cM} is a neighborhood of M;
* asymptotically stable if its stable and attractive;
* globally asymptotically stable if its asymptotically stable and A+(M)=X.

The set A+(M) is called the basin of attraction of M.

Assume now that the compact set M is included in a positively invariant set ¥ if,
in the above definition, we restrict the dynamical system to we will speak
of stability, attraction, etc. with regard to Y. Thus, we will say that M is stable with
regard to Yif for every neighborhood V of M, there exists a neighborhood W of M
such that

2. Localization of the attractive sets. Let (X, R, 1) be a dynamical system, Q a
positively invariant subset of X and V: Q—R a continuous function, we denote by

V(x) the number (possibly infinite) defined by

The following lemma is about the limit sets and is proved in [6].

Lemma 1. Let be a dynamical system, K a subset of X and V: X—R a
function such that for all xe K. If for some is in-
cluded in K, then V(y)=V?) for all y, (resp. in L(x)).

We state below the La-Salle's invariance principle in the framework of dynamical
systems, notice that this result, stated by La-Salle in [1] has been reformulated by
Saperstone [7] in the framework of semidynamical systems. Recall that a dynamical

system is said Lagrange stable if is compact for all x.

Principle Invariance. Let be a dynamical system which is Lagrange
stable and £2 a subset of X, positively invariant. Assume that there exists a function
V:Q —NR such that V(x) <0 for every x€ Q. We put /- and we call

Y the maximal positively invariant set included in E. Then for every
and V is constant on L+(x).

Since, for every x, the closure of the positive semi-orbit ¥*(x) is compact, we can
write also SO we can say, equivalently, that set Yis attractive.

As for as we are concerned with the sign of function V, we have the following
result.
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Lemma 2. Let (X, R, ©) be a dynamical system which is Lagrange stable and €2 a
subset of X, positively invariant. Assume that there exists a function V: Q —%R such
that V(x) <0 for every x€ Q. Then for every x€ Q V(x)Zir;f V.

Proof. Since V(x) <0 the function t— V{xt) is non increasing so V(x)>V(xt) for
every 20, from which we can deduce that V(x)2 ir}f V since L*(x)CY.
In the particular case where Y'is compact, in’f/ V > -0 and so there exists a con-

stant ¢ such that W(x)=V{(x)+c is positive for every x€ Q and W(x)=V(x)<0.
When Y is not compact, ir}f V can be equal to —=. As a matter of fact, consider

the following example given in R3

&3
]

and V(x, y. = - + )’2) we have V(x, Poz)= -7%<0, E=Y={(x, y, 2)e R z=0} and
ir;f V = —o0, 50 there does not exists a constant ¢ such that V{(x)+c=0.

Notice also that, if Vis constant on every limit set L*(x), this is not longer true on
Y, consider the following example given in R

{J’c =—x0(x,y)— ¥,
y=x=yo(x,y)
where
| . 5
exp| ————— | if x +y >1,
o(x,y) = p(l—(x2 +y‘)j d g
0 if x> +y*<1.
Let
1.,
V(x, y)=—,)-(X‘ +¥°);
we have

V(x,y) ==+ y)ox, y),
and E=Y={(x, y)e R .\‘2+y231 }, it can be easily seen that V'is not constant on E.
Finally, we emphasize on the fact that the La-Salle's principle does not allow, in
general, to conclude to the stability of a set. The following example is well known in
the literature and is due to R.E. Vinograd
__ P-n+y
S+ )
Y’ (y=2x)
@+ YA+ + YY)
For this system, it is well known that the origin is an unstable and attractive equilib-

rium (see [8] for more details), if we add to these two equations the equation
Z=-—z, we obtain a system defined in R* for which the origin is still an unstable

and attractive equilibrium. For this last system the function V: (x, y, z)— 5 2% is such

that V = -z <0.
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In conclusion, if we do not assume that Vis definite positive we cannot conclude
to the stability of a set by means of the La-Salle's principle.

3. The method of semi-definite positive functions. The following result was
first published in 1978 [9], see also [10].

Theorem 1. Let (X, R, ) be a dynamical system and M a compact positively in-
variant subset of X. Suppose that there exists a continuous function V defined on a
neighborhood U of M such that:

e V(x)=0 for all xe U and V(x)=0 if xe M;

* V(x)<0 for all xe U;

* M is asymptotically stable with regard to the setYy={x€ U : V(x)=0}.

Then M is stable.

The following theorem is about the asymptotic stability.

Theorem 2. Let (X, R, 1) be a dynamical system, M a compact positively invari-
ant subset of X and V a function defined in a neighborhood U of M. Assume that

* V(x)=0 for all xe U and V(x)=0 if xe M,

« V(x) is non positive;

* M is asymptotically stable with regard to Y the maximal positive invariant sub-
set included in the set {xe X : V(x) =0} (notice that Yoc¥).

Then M is asymptotically stable.

Notice that if the conditions of Principle Invariance are fulfilled and if Y=Y,

then M is asymptotically stable. Conversely suppose that function V satisfies all the
conditions of Principle Invariance and that M is asymptotically stable. Take x in Y,

since Y is positively invariant and Yc{yeX : V(x)=0}, xt belongs to ¥ and

V(x)=V(xt) for all£=0. Now since M is compact and ¥ continuous and zero on M, for
every €50, there exists a>0 such that V(y)<e if ye B(M, o), but xte B(M, o) provided
t is large enough, for such a f we here V(x)=V(xt)<e and so V{(x)=0since V{(x)<e for
all >0.

Finally Theorem 2 can be reformulated as follows:

Theorem 3. Let (X, R, n) be a dynamical system and M a positively invariant
compact subset of X Suppose that there exists a continuous function V defined on a
neighborhood U of M such that:

* V(x)20 for all xe U and V(x)=0 if xe M
V(x) <0 forall xe U;
* M is asymptotically stable with regard to the setYo={xe U : V(x)=0} and Y, is
the maximal positively invariant set contained in E={xe Q : V(x) =0} (so Y=Y;).
Then M is asymptotically stable.

As far as we are concerned with global asymptotic stability, we have the follo-
wing result.

Theorem 4. Let (X, R, ) be a dynamical system, M a compact positively invari-
ant subset of X and V'a function defined in a neighborhood U of M. Assume that

* V(x)=0 for all xe U and V(x)=0 if xe M,

«V(x) isnon positive;

* M is globally asymptotically stable with regard to Y, the maximal positive in-
variant subset included in the set {x€ X : V(x)= 0};

« the dynamical system(X, R, m) is Lagrange stable.

Then UCA™(M), and so if U=X, M is globally asymptotically stable.

Consider in the space R? the differential equations
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=y M
y=—(y+x)y+a(x)’ =327y ,

where a is smooth function such that a(x)=0 <> x=0.

Take V(x, y) = %( v+ X )2 then an easy computation gives us

V(x,y) = -0+ y+ak)?,
the sets Yo and F being
Yo={(x, y)e R y= =), E = Youl(x, y)E R? ty=-a(x)}.

On Fo we have x = —x", so the origin is asymptotically stable with regard to Ys, from
Principle Invariance it following that the origin is stable.

If a=0. it is clear that Y= YyU{(x. 0) : x€ R} and so 0 is stable but not asymptoti-
cally stable.

If 20, in a neighborhood of 0, then Y=1Ysand 0 is asymptotically stable.

Now we claim that the dynamical system (1) is Lagrange stable if function a satis-
fies the following property: ¥V A>0, 3 B>0, |x| > A= 'a(x) - x3\ <B.

As a matter of fact, the expression ‘x3 N+ y(t)‘ is bounded when ¢ varies on R*

and since

(Y(H)+x:(1)) (y(t) Tax(t):=(y() +x:(1)) (y (1) +xs(t) +(a(t)-xs(1)))2,
the expression (y(1) +x3(t))(y(t)+ax(t))- is also bounded as ¢ varies R so for |x(r)| and
[y(r)| large enough we have y(¢)y(r) <0 which proves that y(f) is bounded and so,
Xx(1) is bounded too.

4. Localization of the asymptotically stable sets. Let (X, R, 1) be a dynamical
system, € an open set of X and V: Q%R a continuous function, we adopt the some
notations as in lemma 2.

Theorem 5. Let (X, R, m) be a dynamical system which is Lagrange stable and Q
a subset of X, positively invariant. Assume that there exists a function V: Q —NR such
that V(x)<0 for every xeQ. Let M and Ybe a positively invariant compact sets

(MCY). Suppose that
* V(x)=0foreverye VY,
* M is asymptotically stable with regard to Y.
Then we have:
* V(x= 0 for allxe Q\Y;
* M is asymptotically stable.
Proof. From Lemma 2, we know that V(x)> ir}f V(x)=0 we have V(xt)=0 for all

20 because V(x) <0 and so y'(x)CY. So if xe Q\Y, V(x)>0.

The second point follows from Theorem 2.

Remark. If we add to the conditions of this theorem the hypothesis that the dy-
namical system (X. R, ) is Lagrange stable, we can conclude t FQcA*(M)n dso
M is globally asymptotically stable if Q=X (see Theorem 2).

Corollary. Assume that V(x) <0 for all xe Q and suppose that

* V(x)=0forevery:€ Y;

» Yis compact.

Then we have:

* V(x)=0 for all xe Q\Y;

* Yis asymptotically stable and, if the dynamical system is Lagrange stable,
QCA*(M).
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Proof. With the choice M=Y, M is obviously asymptotically stable with regard to
Y and all the assumptions of Theorem 5 are satisfies. So we can conclude as this
theorem.

Conclusion. The invariance principle gives us a condition about the attraction of
an invariant set (or an equilibrium) and does not permit us to conclude to the stabili-
ty, unless the function Vis definite positive. As for as we are concerned with the sign
of V, we can see that this sign is almost always non negative. On the other hand, the
use of semi-definite positive function allows us to address the problem of the stabi-
lity (or the asymptotic stability) of an equilibrium.
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[Moctynuna B penaxumio 23.09.04.

2Kan-Ka00 Busaavou - 1oKTop (PU3MKO-MaTEMATUUECKUX HAyK, HAYJHBIA PyKOBOOUTEIb JJabopaTto-
pvu Projet CONGE, INRIA, r. Men, ®panims.

bopuc Cepeeesun Kaaumun - xannunar (pr3nko-mMaTeMaTMuecKuX HayK, JOUEHT Kadeapbl METOIOB
ONTUMAJIBHOTO YTIPaBICHUSI.

20 XcR"
X=Ax+b(x)u, xe X, (D
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