Белорусский государственный университет

ФИЗИКА ПОЛУПРОВОДНИКОВ И ПОЛУПРОВОДНИКОВЫХ ПРИБОРОВ

Учебная программа учреждения высшего образования по учебной дисциплине для специальности:

1-31 04 04 Аэрокосмические радиоэлектронные и информационные системы и технологии

Учебная программа составлена на основе *ОСВО 1-31 04 04-2013 и учебных планов УВО № G31-171/уч. 2013 г. . и G31u-188уч 2013 г.*

СОСТАВИТЕЛИ:

П.И.Гайдук, профессор кафедры физической электроники и нанотехнологий Белорусского государственного университета, доктор физико-математических наук, профессор

РЕКОМЕНДОВАНА К УТВЕРЖДЕНИЮ:

Кафедрой физической электроники и нанотехнологий Белорусского государственного университета

(протокол № <u>9</u> от <u>23 мая 2</u>016 г.);

Учебно-методической комиссией факультета радиофизики и компьютерных технологий Белорусского государственного университета (протокол № 9 от 24 мая 2016 г.).

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

Учебная программа «Физика полупроводников и полупроводниковых приборов» разработана ДЛЯ студентов специальности 1-31 04Аэрокосмические радиоэлектронные и информационные системы и технологии в соответствии с требованиями образовательного стандарта ОСВО 1-31 04 04-2013 «Высшее образование. Первая ступень. Специальность 1-31 04 04» и учебного плана УВО № G31-171/уч. 2013 г. Белорусского государственного специальности 1-31 04 04 «Аэрокосмические университета ПО радиоэлектронные и информационные системы и технологии».

Целью изучения дисциплины является формирование у студентов систематизированных теоретических знаний, умений и практических навыков, необходимых для специалистов в области полупроводниковой микро- и наноэлектроники.

Основная задача дисциплины — научить студентов анализировать физические явления, эффекты и процессы, протекающие в полупроводниковых материалах и структурах, лежащих в основе работы приборов электроники, радиоэлектронных устройств.

Дисциплина входит в цикл общепрофессиональных и специальных дисциплин компонента учреждения высшего образования. Для ее успешного усвоения необходимы знания по физике в объеме курса общей физики.

В результате изучения дисциплины студент должен:

знать:

- основные физические процессы, связанные с переносом зарядов в полупроводниковых материалах;
- принципы работы полупроводниковых приборов;
- основные характеристики и области применения полупроводниковых приборов;

уметь:

- проводить теоретические и экспериментальные исследования физических процессов, связанных с распределением и переносом зарядов в твёрдотельных структурах;
- определять электрофизические параметры полупроводниковых материалов и приборов.

владеть:

- методами экспериментального определения и теоретического расчета электрофизических параметров полупроводников;
- методами измерения электрических характеристик полупроводниковых приборов.

Освоение образовательной программы по учебной дисциплине "Физика полупроводников и полупроводниковых приборов" должно обеспечить формирование следующих компетенций:

АК-1. Уметь применять базовые научно-теоретические знания для решения

теоретических и практических задач.

- АК-2. Владеть системным и сравнительным анализом.
- АК-3. Владеть исследовательскими навыками.
- АК-4. Уметь работать самостоятельно.
- АК-5. Быть способным вырабатывать новые идеи (креативность).
- АК-6. Владеть междисциплинарным подходом при решении проблем.
- АК-7. Иметь навыки, связанные с использованием технических устройств, управлением информацией и работой с компьютером.
- ПК-4. Проводить математическое моделирование физических процессов, приборов и устройств.

Программа рассчитана на объем 180 часов, из которых 86 являются аудиторными. Распределение аудиторных часов по видам занятий следующее: лекций – 50 часов, лабораторных работ – 36 часов.

Дисциплина изучается студентами дневной формы получения высшего образования на 3-м курсе в 6-ом семестре.

Аттестация по дисциплине проводится в форме зачета и экзамена.

СОДЕРЖАНИЕ УЧЕБНОГО МАТЕРИАЛА

- 1. Введение. Цель и задачи курса. Этапы развития полупроводниковой электроники. Основные представления о свойствах полупроводников.
- 2. Модельные представления о структуре полупроводников. Типы Операции Кристаллические решетки. связей. Положение и ориентация плоскостей в кристаллах. Обратная решетка. Кристаллические материалов электроники. Дефекты структуры кристаллического строения. Фононы. Выращивание монокристаллов Фазовые диаграммы и твердые растворы.
- 3. Основы зонной теории полупроводников. Качественная модель зонной структуры твердых тел. Уравнение Шредингера для кристалла. Адиабатическое приближение и валентная аппроксимация. Одноэлектронное приближение. Энергетический спектр электронов в кристалле. Одномерная модель Кроннига-Пенни. Зоны Бриллюэна. Эффективная масса носителей заряда. Циклотронный резонанс. Классификация материалов с позиций зонной теории. Элементарная теория примесных состояний
- Статистика носителей заряда в полупроводниках. Плотность квантовых состояний. Функции распределения частиц. Свойства функции Степень заполнения примесных Ферми-Дирака. уровней. Собственный полупроводник. Вырожденные невырожденные полупроводники. И Концентрация носителей заряда в полупроводниках. Закон действующих масс. Ферми положения уровня OT концентрации примеси температуры для невырожденного полупроводника.
- 5. Кинетические явления в полупроводниках. Дрейфовая и диффузионная электропроводность. Подвижность носителей заряда. Соотношение Эйнштейна. Эффект Холла. Механизмы рассеяния носителей заряда. Рассеяние на фононах и ионизованной примеси. Зависимость подвижности носителей заряда от температуры. Электропроводность в сильном электрическом поле. Электростатическая, термоэлектронная и ударная ионизация. Эффект Ганна.
- 6. Генерация и рекомбинация носителей заряда. Взаимодействие света с полупроводниками. Закон Бугера-Ламберта. Генерация и рекомбинация носителей. Равновесные и неравновесные носители заряда. Квазиуровни Ферми. Биполярная и монополярная оптическая генерация носителей. Время жизни неравновесных носителей заряда. Диффузионная длина. Механизмы рекомбинации.
- 7. Фотоэлектрические явления в полупроводниках. Внутренний фотоэффект. Внешний фотоэффект. Фотопроводимость. Спектральная зависимость фотопроводимости. Фотовольтаические эффекты.
- 8. Электронно-дырочный переход. Модель электронно-дырочного перехода. Токи через электронно-дырочный переход. Вольтамперная характеристика электронно-дырочного перехода. Генерация и рекомбинация носителей заряда в электронно-дырочном переходе. Концентрации неосновных носителей заряда у границ электронно-дырочного перехода. Распределение напряженности электрического поля и потенциала. Барьерная емкость

электронно-дырочного перехода. Пробой электронно-дырочного перехода. Контактные явления. Переходы Шоттки. Омические контакты. Гетеропереходы.

- 9. Полупроводниковые диоды. Специальные типы диодов. Модель полупроводникового диода. Переходные процессы в диодах. Классификация диодов. Импульсные диоды. Диод Шоттки. Стабилитроны. Лавинно пролетные диоды. Туннельные диоды. Варикапы. Варисторы. Шумовые диоды. Обращенные диоды. Импульсные диоды.
- 10. Полупроводниковые транзисторы. Биполярные транзисторы. Электрические схемы включения и режимы работы биполярных транзисторов. Эквивалентная схема биполярного транзистора. Емкости переходов. Частотные характеристики. Статистические характеристики. Явления в транзисторах при больших токах. Дрейфовые транзисторы. Полевые транзисторы с управляющим переходом. Полевые транзисторы с изолированным затвором. Измерение h-параметров биполярного транзистора. Измерение подвижности носителей заряда в канале полевого транзистора.
- 11. Ключевые и функциональные приборы. Тиристоры. Приборы с зарядовой связью. Полупроводниковые термоэлектрические и гальваномагнитные приборы. Терморезисторы. Варисторы. Приборы Пельтье. Датчики Холла.
- 12. Оптоэлектронные полупроводниковые приборы. Фотоприемники. Светодиоды и полупроводниковые лазеры. Оптопары. Фотоэлектрические преобразователи солнечной энергии.
- 13. Перспективные направления развития полупроводниковых приборов. Микро- и нано-электроника. Интегральные схемы. Приборы на гетеропереходах. Квантоворазмерные структуры и приборы на их основе.

учебно-методическая карта учебной дисциплины

P	Название раздела, темы	Количество аудиторных часов			yCP	и ви		
Номер раздела, темы		Лекции	Практические занятия	Лабораторные занятия	Количество часов У	Материальное обеспечение занятия (наглядные, методические пособия др.)	Литература	Форма контроля знаний
1	2	3	4	5	6	7	8	9
1.	ВВЕДЕНИЕ (2 ч)	1	-	-	-			
1.1.	Введение	1				Презентация 1	[1], [2], [5], [6]	Устный опрос
2.	МОДЕЛЬНЫЕ ПРЕДСТАВЛЕНИЯ О СТРУКТУРЕ ПОЛУПРОВОДНИКОВ (7 ч)	3	-	4	-			
2.1.	Симметрия кристаллов	1				Презентация 2а	[1], [6], [10]	Устный опрос
2.2.	Выращивание монокристаллов полупроводников	2				Презентация 2б	[1],[2],[3], [12]	Аудиторный тест по главе
2.3.	Изучение кристаллической структуры основных полупроводников.			4		Компьютерный класс, учебная лаборатория	[1], [12]	Отчет по лабораторной работе
3.	ОСНОВЫ ЗОННОЙ ТЕОРИИ ПОЛУПРОВОДНИКОВ (8 ч)	4	-	4	-			
3.1.	Уравнение Шредингера для кристалла	2				Презентация За	[1-4],[10] [11-15]	Устный опрос
3.2.	Энергетический спектр электронов в кристалле	2				Презентация 3б	[1-6],[11], [13]	Аудиторный тест по главе
3.3. 4.	Изучение зонной структуры полупроводников Si, Ge, GaAs, AlAs и сплавов на их основе в зависимости от композиционного состава СТАТИСТИКА НОСИТЕЛЕЙ ЗАРЯДА В	6	_	4	_	Компьютерный класс, учебная лаборатория	[1], [5]	Отчет по лабораторной работе

	ПОЛУПРОВОДНИКАХ (10 ч)						
4.1.	Заполнение энергетических уровней	2			Презентация 4а	[1-3],[5]	Устный опрос
4.2.	Концентрация носителей заряда в полупроводнике	2			Презентация 4б	[1-4] [10-13]	Устный опрос
4.3.	Положение уровня Ферми в невырожденном полупроводнике	2			Презентация 4в	[1-4],[12]	Аудиторный тест по главе
4.4.	Исследование положения уровня Ферми в зависимости от концентрации легирующей примеси и температуры.			4	Компьютерный класс, учебная лаборатория	[1-4],[11- 13]	Отчет по лабораторной работе
5.	КИНЕТИЧЕСКИЕ ЯВЛЕНИЯ В ПОЛУПРОВОДНИКАХ (8 ч)	4	-	4	-		
5.1.	Дрейфовая и диффузионная электропроводность	2			Презентация 5а	[1-5],[18]	Устный опрос
5.2.	Электропроводность в сильном электрическом поле	2			Презентация 5б	[1-3],[11] [13-18]	Аудиторный тест по главе
5.3.	Определение подвижности и концентрации носителей заряда методом эффекта Холла.			4	Учебная лаборатория, стенд «эффект Холла»	[1-5] [13]	Отчет по лабораторной работе
6.	ГЕНЕРАЦИЯ И РЕКОМБИНАЦИЯ НОСИТЕЛЕЙ ЗАРЯДА (8 ч)	4	-	4	-		
6.1.	Генерация носителей	2			Презентация ба	[1-6],[8] [19]	Устный опрос
6.2.	Механизмы рекомбинации	2			Презентация ба	[1-5], [18]	Аудиторный тест по главе
6.3.	Изучение эффекта Ганна.			4	Учебная лаборатория, стенд «эффект Ганна»	[1-3]	Отчет по лабораторной работе
7.	ФОТОЭЛЕКТРИЧЕСКИЕ ЯВЛЕНИЯ В ПОЛУПРОВОДНИКАХ (8 ч)	4	-	4	-		
7.1.	Фотопроводимость	2			Презентация 7а	[1-3]	Устный опрос
7.2.	Фотовольтаические эффекты	2			Презентация 7б	[1-6]	Аудиторный тест по главе
7.3.	Спектральная зависимость фотопроводимости			4	Учебная лабора-	[1-4]	Отчет по

	полупроводников.				тория, стенд «ФП»		лабораторной работе
8.	ЭЛЕКТРОННО-ДЫРОЧНЫЙ ПЕРЕХОД (4 ч)	4	-	-	-		
8.1.	Контактные явления	2			Презентация 8а	[1],[13-15]	Устный опрос
8.2.	Область пространственного заряда и емкость	2			Презентация 8б	[1],[7],[8] [12]	Аудиторный тест по главе
9.	ПОЛУПРОВОДНИКОВЫЕ ДИОДЫ. СПЕЦИАЛЬНЫЕ ТИПЫ ДИОДОВ (8 ч)	4	-	4	-		
9.1.	ВАХ и переходные процессы в диодах	2			Презентация 9а	[1],[5],[8] [9-11]	Устный опрос
9.2.	Типы диодов	2			Презентация 9б	[1],[6],[7]	Аудиторный тест по главе
9.3.	Изучение электрофизических характеристик диода.			4	Компьютерный класс, учебная лаборатория	[7],[8]	Отчет по лабораторной работе
10.	ПОЛУПРОВОДНИКОВЫЕ ТРАНЗИСТОРЫ (10ч)	6	-	4	-		
10.1	Биполярные транзисторы.	2			Презентация 10а	[1],[7],[8]	Устный опрос
10.2	Частотные и статистические характеристики.	2			Презентация 10б	[7],[8]	Устный опрос
10.1	Полевые транзисторы.	2			Презентация 10в	[7],[8]	Аудиторный тест по главе
10.3	Изучение характеристик транзистора.			4	Компьютерный класс, учебная лаборатория	[1],[2],[7] [8]	Отчет по лабораторной работе
11.	КЛЮЧЕВЫЕ И ФУНКЦИОНАЛЬНЫЕ ПРИБОРЫ (4 ч)	4	-	-	-		
11.1	Многослойные структуры	2			Презентация 11а	[10],[8],[19]	Устный опрос
11.2	Функциональные приборы	2			Презентация 11б	[7],[8]	Аудиторный тест по главе
12.	ОПТОЭЛЕКТРОННЫЕ ПОЛУПРОВОДНИКОВЫЕ ПРИБОРЫ (8 ч)	4	-	4	-		
12.1	Фотоприемники	2			Презентация 12а	[1-3], [5], [9]	Устный опрос

12.2	Светоизлучающие приборы	2				Презентация 12б	[1-7], [9]	Аудиторный тест
								по главе
12.3	Изучение спектральных характеристик светодиодов.			4		Учебная лабора-	[1-5]	Отчет по
						тория, стенд	[13]	лабораторной
						«ФП»		работе
13.	ПЕРСПЕКТИВНЫЕ НАПРАВЛЕНИЯ	2	-	-	-			
	РАЗВИТИЯ ПОЛУПРОВОДНИКОВЫХ							
	ПРИБОРОВ (4 ч)							
13.1	Интегральные схемы	1				Презентация 13а	[1-3], [5-9]	Устный опрос
13.2	Квантоворазмерные структуры и приборы на их	1				Презентация 13б	[17-19]	Аудиторный тест
	основе							по главе

ИНФОРМАЦИОННО-МЕТОДИЧЕСКАЯ ЧАСТЬ

Основная литература

- 1. Шалимова, К.В. Физика полупроводников / К.В. Шалимова. М.: Энергия, 1985.
- 2. *Фистуль, В.И.* Введение в физику полупроводников / В.И. Фистуль. М.: Высш. шк., 1984.
- 3. *Бонч-Бруевич, В.Л.* Физика полупроводников / В.Л. Бонч-Бруевич, С.Г. Калашников / М.: Наука, 1977.
- 4. Смит, Р. Полупроводники / Р. Смит. М.: Мир, 1982. 560 с.
- 5. *Росадо*, Л. Физическая электроника и микроэлектроника / Л. Росадо. М.: Высш. школа, 1991.
- 6. *Солимар*. Лекции по электрическим свойствам материалов / Солимар. М.: Мир, 1991.
- 7. *Пасынков, В.В.* Полупроводниковые приборы / В.В. Пасынков, Л.К. Чиркин. С-П, 1991. 470с.
- 8. Зи, С. Физика полупроводниковых приборов / С. Зи. М, 1984
- 9. *Степаненко, И.П.* Основы микроэлектроники / И.П. Степаненко. М, 1980. 250с.
- 10. Викулин, И.М. Физика полупроводниковых приборов / И.М. Викулин, В.И. Стафеев. М, 1980.

Дополнительная литература

- 11. *Ридли, Б.* Квантовые процессы в полупроводниках. / Б. Ридли М.: Мир, 1986.
- 12. *Епифанов*, *Г.И*. Физика твердого тела. / Г.И. Епифанов. М.: Высш. школа, 1977.
- 13. Анималу, А. Квантовая теория кристаллических твердых тел. / А. Анималу. М.: Мир, 1981.
- 14. *Mayer*, *J.W.* Electronic Materials Science / J.W. Mayer, S.S. Lau. N.Y.: Macmilan Publ. Company, 1994. 476 p.
- 15. *Малер, Р.* Элементы интегральных схем / Р. Маллер, М.Кейминс. М.: Мир, 1981. 630 с.
- 16. Тилл, У. Интегральные схемы. Материалы, приборы, изготовление. / У. Тилл, Дж. Лаксон. М.: Мир, 1985. 501 с.
- 17. *Мосс, Т.* Полупроводниковая оптоэлектроника. / Т. Мосс, Г. Баррел, Б. Эллис. М.: Мир, 1979.
- 18. *Шур М.* Современные приборы на основе арсенида галлия. / М. Шур. М.: Мир, 1991.
- 19. Овчинников, В.В. Технологии многослойных структур для микроэлектроники / В.В. Овчинников, А.С. Тимошин, В.В.Крапухин. М, 1992. 88с.

Примерный перечень лабораторных работ

- 1. Изучение кристаллической структуры основных полупроводников (компьютерные Апплеты).
- 2. Изучение зонной структуры полупроводников Si, Ge, GaAs, AlAs и сплавов на их основе в зависимости от композиционного состава (компьютерные Апплеты).
- 3. Исследование положения уровня Ферми в зависимости от концентрации легирующей примеси и температуры (компьютерные Апплеты).
- 4. Определение подвижности и концентрации носителей заряда методом эффекта Холла (лабораторный стенд).
- 5. Спектральная зависимость фотопроводимости полупроводников (лабораторный стенд).
- 6. Изучение эффекта Ганна (лабораторный стенд).
- 7. Изучение электрофизических характеристик терморезистора (лабораторный стенд).
- 8. Изучение электрофизических характеристик диода (компьютерные Апплеты).
- 9. Изучение характеристик транзистора (компьютерные Апплеты).
- 10. Изучение спектральных характеристик светодиодов (лабораторный стенд).

Выполнение лабораторных работ

В лабораторном практикуме по дисциплине «Физика полупроводников и приборов» запланировано проведение полупроводниковых натурных экспериментов по изучению физических свойств полупроводниковых материалов и характеристик полупроводниковых приборов с различными по сложности стендовыми измерениями. Кроме того необходимым условием глубокого понимания и усвоения изучаемого материала является проведение студентами компьютерного моделирования, решение компьютерных задач с использованием современных программных (апплетов) интерактивного исследования И изучения характеристик как полупроводниковых материалов, так и приборов на их основе. Параллельное проведение натурного и компьютерного экспериментов в ходе выполнения лабораторного практикума по дисциплине «Физика полупроводников и полупроводниковых приборов» позволяет в дальнейшем более эффективно и грамотно использовать полученные при изучении дисциплины студентами знания, а также приобретённые ими умения и навыки в своей дальнейшей практической профессиональной работе.

Задание по лабораторным работам для студентов заключается в подготовке отчета в письменном виде по выполненной работе. Контроль выполнения лабораторных работ будет осуществляться путем рассмотрения отчета по каждой выполненной лабораторной работе. Отчет по лабораторной работе должен содержать:

- 1. Фамилию, имя, отчество студента, номер группы.
- 2. Название работы.
- 3. Цель исследования.

- 4. Исходные данные и методику проведения лабораторной работы.
- 5. Название выполняемого пункта задания.
- 6. Блок-схему исследования (где это применимо) с необходимыми пояснениями.
- 7. Таблицы рассчитанных и экспериментальных зависимостей в виде удобном для анализа.
- 8. Графические зависимости рассчитанных и экспериментальных данных с нанесенными точками и выполненные на одном рисунке для каждого случая.
- 9. Обсуждение полученных результатов, оценки величин и зависимостей, выводы по работе.

Защита отчетов по лабораторной работе студентам будет проводиться в форме индивидуального собеседования и тестирования.

Перечень средств диагностики

Основным средством диагностики усвоения знаний и овладения необходимыми умениями и навыками по дисциплине «Физика полупроводников и полупроводниковых приборов» является письменная работа в виде аудиторного тестирования, подготовка отчетов по лабораторным работам с последующим индивидуальным собеседованием и тестированием по ним, подготовка рефератов, контрольные опросы на лекциях, консультации.

Методика формирования итоговой оценки

Итоговая оценка по дисциплине формируется на основе зачетной оценки и оценки текущего контроля. Весовой коэффициент зачетной оценки - 0,5; весовой коэффициент текущей успеваемости - 0,5. Оценка текущего контроля формируется на основании оценок отчетов по лабораторному практикуму и результатов тестирования с равными весовыми коэффициентами.

ПРОТОКОЛ СОГЛАСОВАНИЯ УЧЕБНОЙ ПРОГРАММЫ УВО

Название учебной	Название	Предложения	Решение,
дисциплины,	кафедры	об изменениях в	принятое
с которой		содержании	кафедрой,
требуется		учебной	разработавшей
согласование		программы	учебную
		учреждения	программу (с
		высшего	указанием даты
		образования по	и номера
		учебной	протокола)1
		дисциплине	
Общая физика	Кафедра физики и	-	Протокол № 9 от
	аэрокосмических		23 мая 2016 г.
	технологий		

 $^{^{1}}$ При наличии предложений об изменениях в содержании учебной программы УВО.

ДОПОЛНЕНИЯ И ИЗМЕНЕНИЯ К УЧЕБНОЙ ПРОГРАММЕ УВО на ____/___ учебный год

№ п/п	Дополне		Основание			
	я программа пересмо ской электроники и н	отрена и одобрена на за	седании ка	афедры		
физиче	скои электроники и н	<u>протокол № —</u>	ОТ	201	г)	
		(iipo10k031312	01	201	_ 1.)	
Заведун	ощий кафедрой					
(ученая ст	епень, ученое звание)	(подпись)	(И.	.О.Фамилия)		
УТВЕР	ЖДАЮ					
Декан ф	ракультета					
(1,11,11,11,11,11,11,11,11,11,11,11,11,1		(7077745		O (Day (17-7-7)		
(ученая ст	епень, ученое звание)	(подпись)	(И.	.О.Фамилия)		