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Abstract: Diabetic retinopathy (DR) is a common eye 

disease that could lead to irreversible vision loss but hard 

to be noticed by carriers in early stages. Instead of 

isolating DR signs for DR recognition, this paper 

examines discriminant texture features obtained by color 

multi-scale uniform local binary pattern (LBPs) 

descriptors on five common color spaces and two 

proposed hybrid color spaces. The extracted features are 

evaluated by the enhanced Fisher linear discriminant, 

EFM. Experiments are done on a large dataset of 35,126 

training images and 53,576 testing images that have been 

taken by different devices with high variance in 

dimensions, quality and luminance.  

Keywords: diabetic retinopathy recognition, texture, local 

binary pattern, EFM, color channels, color spaces 

1. SIGNIFICANCE OF DIABETIC RETINOPATHY 

RECOGNITION  

Diabetic retinopathy (DR) is a common eye disease 

which affects one in three diabetes carriers in America. 

DR is caused due to high glucose level which damages 

small blood vessels in retina. In consequence, blood, extra 

fluid, cholesterol, and other fats leak in the retina and 

swollen the macula. To replace damaged capillaries, the 

retina grows new abnormal fragile blood vessels; 

however, the new vessels are usually accompanied with 

scar tissue which may wrinkle or detach the retina and 

distort vision. Although timely treatment can reduce the 

risk of severe vision loss by over 90%, DR carriers do not 

notice vision changes until the late stages and the manual 

process of grading a retina image consumes time and 

labor. 

Fig. 1 shows a fundus image with labeled signs of 

diabetic retinopathy. Microaneurysms (MAs) are tiny 

bulges in blood vessels and appear as deep-red dots. 

Haemorrahages are small spots of blood discharge. Hard 

exudates are leakage of lipid and protein in the retina. 

Hard exudates typically emerge as bright, reflective 

lesions. Hard exudates and microaneuryms around macula 

might block vision, damage the macula, and leads to 

permanent vision loss [7, 19]. Depending on the presence 

of DR signs and their complexity, a fundus image can be 

marked by an ophthalmologist as normal or one of four 

DR stages that are grouped in two types of retinopathy: 

nonproliferative diabetic retinopathy (NPDR) and 

proliferative diabetic retinopathy (PDR). NPDR is further 

classified into three stages: mild, moderate, and severe. 

This paper studies DR recognition on a real-world 

retinopathy image dataset provided by EyePACS, a free 

platform for retinopathy screening, through Kaggle 

website. The dataset originally consists of 35,126 training 

images and 53,576 testing images. These images are taken 

by different models and types of camera under different 

conditions and stored in various, high resolutions. Each 

image has been examined on the presence of DR by a 

clinician to be labeled with a DR stage from 0 to 4, 

corresponding to no DR, mild, moderate, severe, and 

proliferative DR as being described in the introduction 

section. Within the train dataset, there are 74% images of 

stage 0 (no DR), 7% of stage 1 (mild), 15% of stage 2 

(moderate), 2% of stage 3 (severe) and 2% of stage 4 

(proliferate DR) approximately. Images in the test 

datasets are split to 5 stages in the similar ratios as in the 

train dataset.  

Beside the large scale, the challenges of this dataset 

are its large variance in resolution, intensity, and quality. 

By examining the train dataset, image heights vary from 

289 to 3456 pixels, while their widths fluctuate from 400 

to 5184 pixels with the range of ratios between height and 

width is between 0.66 and 1.00. The average of image 

intensity spreads from 1 to 192 around the mean of 63. 

Low intensity images are stored in 8KB while other 

images can allocate up to 2MB files.  
 

 

Fig. 1 - DR signs and main structure in a retina image 

 

The rest of the paper is organized as follows. Section 

2 reviews background of current feature extraction and 

classification techniques on DR recognition. Section 3 

proposes the methodology to extract color texture features 

and classification techniques to identify DR stages. 

Experimental results and discussion present in section 4. 

Section 5 concludes the research with future direction. 

2. RELATED WORK 

With the clinical fact that MAs are the earliest signs of 

diabetic retinopathy [3], most DR papers focus on 

extracting clinical features by localizing and segmenting 

lesions, blood vessels, optic disks, and macula one by 

one. Basic point operators are applied to balance and 

enhance local contrast, and linear filters and 

neighborhood operators such as morphological operators, 

median filters, and Gaussian filters are convoluted on 

images in pre-processing as indicated in surveys [7, 12]. 
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Watershed transformation is applied in [22] to overcome 

over-segmentation caused by thresholds. Other techniques 

such as active contour models and recursive region-

growing technique (RRGT) are used in the domain 

researches to isolate blood vessels and other interested 

regions [12]. 

In addition to segmentation, contrast texture is 

extracted together with isolated areas of MAs and HAs in 

[13] to classify DR. In recent years, local binary pattern 

(LBP) texture is started being used for DR detection on 

small retina datasets with less than 100 images in [6, 4]. 

In other domains such as face and scene recognition, 

texture descriptor such as local binary pattern texture has 

been proven to contribute significant performance [9]. 

When sampling on a large set of images which are 

taken by different devices under various conditions of 

light and intensity, it is crucial for a robust vision system 

to adapt a discriminant color space. HSI is applied for 

Messidor and DB-rect DR datasets in [8] to extract MAs 

and exudates, and selected by [20] to locate fovea. Green 

component in RGB is focused to extract blood vessel 

structure in [1, 13]. All channels of RGB are separately 

examined in [11] with morphology operations to extract 

the total area and perimeters of blood vessels, HAs, and 

MAs. Ram and Jayanthi [18] consider multiple color 

spaces such as RGB, L*u*v*, HSV and HSI to extract 

lesion pixel values. 

In classification stage, support vector machine (SVM) 

and artificial neural network (ANN) are two popular 

techniques in DR recognition problems [8, 1, 13, 11, 12, 

6, 4]. Acharya et al. [1] applies SVM on a dataset of 331 

retina images to identify five DR stages with an overall 

accuracy of 86%. Back propagation neural network is 

applied in [11] to identify four DR stages with an 

accuracy of 84% on a dataset of 124 images. 

3. METHODOLOGY 

In this work, we examine DR classification 

performance by fusion of features that are extracted by 

uniform LBP descriptors at multiple scales. 

Discriminating power of color spaces and their individual 

color channels are investigated by applying the method on 

commonly used color spaces such as RGB, HSI, L*a*b*, 

rgb, and I1I2I3, and two hybrid color spaces a*SI and bSI. 

The proposed method consists of three major parts: image 

preprocessing, feature extraction on a color space, and 

classification via an enhanced Fisher model (EFM) built 

upon principal component analysis (PCA) and Fisher’s 

linear discriminant method (FLD) (Fig. 2). 

As being mentioned in the dataset description section 

that input images are in a large range of dimension, the 

main task in image preprocessing is converting any input 

image of any size to a fixed square image, whose 

dimension is also the diameter of the circular eye shape. 

For a given image, a circumscribing rectangle of the eye 

is determined by scanning pixels along the horizontal and 

vertical mid-lines of the image. The image is then cropped 

around the center of the determined circumscribing 

rectangle to extract a square image whose dimension is 

the shorter side of the boundary rectangle. Next, the 

square image is scaled by bicubic interpolation method to 

a 512x512 image before being clipped around its center 

by a radius r=256 to guarantee that retina content is 

captured in a full inscribed circle of the final output 

square image. In the final step of preprocessing part, 

training images in DR stages 1-4 are also increased by 

flipping and rotation to balance training image quantities 

for all DR stages and avoid over-train on large classes. 

 

 
Fig. 2 - Methodology Overview 

Feature extraction is based on local binary pattern 

(LBP) descriptors, a texture technique that was proposed 

and improved by Ojala et al. [16, 17]. LBP has been 

proven as a robust feature descriptor in biometrics, face 

detection, and scene recognition [2, 5]. The basic LBP 

focuses on each 3x3 neighborhood to form an ordered 8-

bit LBP code by comparing the surrounding pixels’ gray 

value with its center. The local binary pattern around a 

pixel P by eight neighbor Px is encoded as follows: 
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As the operator focuses on the signed differences of 

gray values and disregards the value difference, it is 

invariant to changes in mean luminance. For scale 

invariance improvement, LBP operator is extended to 

consider a circularly symmetric neighbor set of P pixels 

on a circle of radius R surrounding the center pixel, 

denoted as LBPP,R. The top middle neighbor is the most 

significant bit in LBP code, and other neighbors are 

ordered clockwise. For each neighbor point whose 

coordinators are not exactly in the center of pixels, its 

gray value is estimated by interpolation rather than the 

nearest pixel’s value. 

The extension in [16] defines a so-called uniform 

pattern, denoted as LPBP,R
riu2, which contains at most two 

spatial transitions in its circular chained binary pattern, 

“1-0” and “0-1”. LPBP,R
riu2 does not only improve rotation 
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invariance but also significantly reduces LBP dimension 

by preserving a single bin for all nonuniform patterns. 

In the real diabetic retinopathy recognition problem, 

images are taken by different devices under different 

conditions of light and quality. In addition, besides the 

main structure of a retina in the images, DR signs are 

fine-grain and their granularity diversifies. Thus, uniform 

local binary pattern detection should be applied at 

different scales to capture discriminant features that are 

invariant to rotation, global intensity, and scales. 

In our experiments, each 512x512 retina image is 

divided into four regions. Texture features are extracted at 

4 scales by LPB8,2
riu2, LPB16,4

riu2, LPB24,6
riu2, and 

LPB32,10
riu2 descriptors on each 256x256 region at each 

color channel of a color space. The extracted LBP 

features are standardized at each scale. The final 1056-

dimension feature vector for a color retina image is 

formed by standardizing the concatenation of features at 

all scales. 

 

 
Fig. 3 - (8,2), (16,4), (24,6), and (32,10) LBP neighborhoods. 

The aforementioned feature extraction process will be 

applied on different color spaces. Colors are wavelengths 

of light that are reflected by object surfaces and perceived 

by human eyes. A color space is a mathematical model to 

organize colors in a way that relates to the perceived 

colors. Each color space possesses specific characteristics 

with different discriminating power and suitable for 

selective visual tasks. The fundamental RGB color space 

is built on three primary color components close to red, 

green, and blue wavelengths and used in reproduction 

systems [14].  

The I1I2I3 color space is obtained by the decorrelation 

of RGB color components through Karhumen Lo´eve 

[15]. The color space was found in 1980 in the 

experiments of region segmentation. The color 

components are ordered by their segmentation 

effectiveness and formed by the following transformation: 
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The rgb color space is a chromaticity space defined by 

normalizing RGB components to reduce the sensitivity of 

luminance [5]. The color space is represented by the 

proportion of red, green, and blue in the original RGB. 
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HSI is a perceptual color space whose components 

intuitively approximate the perceived hue, saturation, and 

intensity in order. HSI components are obtained by the 

following equations 
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where and r, g, and b are normalized RGB components 

obtained by Eq. 3 and  
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L*a*b* color space is directly derived from CIE XYZ, 

a color system that was built upon imaginary primary 

colors [X Y Z] to form a device-independent color space 

with better descriptive properties [14]. L*a*b* mimic the 

logarithmic response of the human vision system. The L* 

channel represents luminance in the range from 0 to 100, 

while a* and b* channels represent chrominance 

opponents. L*a*b* components can be derived as follows 
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where Xn, Yn, and Yn are the CIE XYZ component values 

of the reference white point and 
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In addition to the existing color spaces, experiments 

are similarly conducted on two hybrid colors that are 

derived from HSI: a*SI and bSI. The only difference 

between the hybrid colors and the original color space 

HSI is the first channel. The first channel of a*SI is the a* 

channel of L*a*b*, and the first channel of bSI is the 

normalized blue channel of rgb.  

Classification of the extracted features on each color 

space is based on the Enhanced Fisher model, EFM, a 

classification model that is built upon PCA and FLD. In 

short, PCA is a common technique to linearly transform 

data to a lower dimensionality space and reduce data 

noise while trying to preserve the most variance of data 

[23]. Although PCA is a popular technique in pattern 

recognition, it is not optimized for class separability. 

Instead, the alternative technique, FLD, has been 

proposed to model the difference between classes of data 

[10, 21]. FLD is a popular discriminant criterion that 

defines a projection to reduce within-class scatter and 

enlarge the between-class scatter for an L-class problem. 

The FLD method encounters overfitting drawback 

when there are insufficient sample data for generalization. 

EFM overcomes this issue by combining PCA and FLD 

in the proper balance of the selected eigen features for an 

adequate representation of raw data and the requirement 

that the eigenvalues of the within-class scatter matrix in 

the reduced PCA are sufficient large for generalization 
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[9]. In EFM classifier, discriminant features, Z, are 

obtained by projecting the PCA reduced feature on the 

optimal FLD projection matrix. Each discriminant feature 

is assigned to the nearest class by measuring its cosine 

distances to all class centers in our experiments.  

Besides the proven proven effectiveness of EFM in 

the domains of face and scene recognition, the classifier is 

selected for DR recognition experiments on multiple 

colors and color channels because of its simplicity in 

terms of computation and parameters. Since the number 

of classes in DR recognition is small, the maximum FLD 

feature dimension, m = L−1 = 4, is chosen for the best 

generalization of within and between class relationship. 

The balanced PCA criterion for the selected FLD feature 

dimension is determined by 5-fold cross-validation on the 

train dataset. 

4. EXPERIMENT RESULTS 

Experiments are initially conducted on gray scale and 

five different color spaces. The performance is measured 

by the correct classification rate on the test dataset. 

Experiment results obviously show that all color spaces 

surpass gray scale performance. Among examined color 

spaces, intuitive color space L*a*b* and HSI outperforms 

RGB, rgb, and I1I2I3. The multiscale LBP descriptor on 

HSI, denoted as HIS-LBPs, achieves the best 

performance, 71.45%, among the five descriptors, and it 

exceeds gray scale by 5.47%. The results support the idea 

of selecting HSI as the color space to extract MAs and 

exudates in [8]. It is apparent to understand that the rgb 

color space performs worst (66.30%) due to the complete 

absence of luminance. Performance on the proposed 

hybrid color spaces, a*SI and bSI, is 71.49%, that is 

slightly better than HSI performance as summarized in 

Fig. 4. Additionally, Fig. 5 shows sample RGB images 

that are not correctly classified by RGB-LBPs and Lab-

LBPs descriptor but correctly classified by HSI-LBPs, 

aSI-LBPs, and bSI-LBPs descriptors. One can visually 

realize that these example images are very different in 

terms of light and color.  

 

 
Fig. 4 - EFM classification performance on color spaces. 

Table 1. LBP-EFM performance on color channels and color 

spaces 

 
Color 

Space 

Channel 

1 

Channel 

2 

Channel 

3 

HSI 71.45 65.92 68.79 65.93 

L*a*b* 69.73 66.03 63.69 61.18 

I123 69.43 65.93 62.21 61.99 

RGB 68.77 63.98 65.64 61.73 

rgb 66.30 61.59 61.05 60.50 

gray 65.98 65.98   

 

For more insights on color LBPs descriptors, 

experiments are further carried on individual channels of 

each aforementioned color (Table 1). In rgb color space, b 

channel performs worst. The best performance, 61.59%, 

on the r channel is only 1% above the worst channel but 

5% below the performance of the color space. It means 

that different discriminant features could be arranged on 

every channel of rgb, thus, there is no significantly strong 

channel and rgb significantly outperforms its individual 

channels.  
In the other four color spaces, improvement of each 

color performance over its best channel is not as 

significant as in rgb. The performance improvement on 

these color spaces is from 2.7% to 3.8%. There is a 

dominant channel that outperforms the worst channel 

from 2.9% to 3.9% in each color space. In RGB, green 

channel achieves the best performance and this result 

could explain why it is the selected channel to extract 

blood vessel structure in [1, 13]. The first channel of I1I2I3 

performs better than other two channels because it the 

channel holding most chrominance and luminance 

information. In L*a*b* color space, the luminance 

channel L* outperforms chrominance channels. 

In HSI and proposed HSI-like hybrid color spaces, the 

most discriminant features are identified on the saturation 

channel. Although intensity and hue perform at the same 

accuracy rate, a* and b channels performance is at least 

2% less than hue. It could be implied that there are more 

discriminant features that are not found in saturation 

channel could be identified in channel I than in channel 

H. It should be noticed that channel I of HSI is also the 

strongest channel of I1I2I3. 

5. CONCLUSION 

We have examined in this paper different color multi-

scale local binary pattern texture descriptors, LBPs, for 

diabetic retinopathy recognition on a large dataset. The 

enhanced Fisher linear discriminant is applied to identify 

the promising color spaces and color channel candidates 

to obtain the most discriminant LBPs features for DR 

recognition. Empirical results show that HSI-LBPs 

descriptor and its variants, a*SI-LBPs and bSI-LBPs 

descriptors outperform other color LBPs and gray LBPs 

descriptors. 

For the future plan, the candidate color LBPs 

descriptors can be combined with features from other 

region or gradient detectors to improve DR performance. 

Other classification and ensemble techniques will be 

explored to achieve better accuracy. 
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