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Abstract: Data mining (DM) is a collection of algorithms 

that are used to find some novel, useful and interesting 

knowledge in databases. Some methods of these fields can 

be used to find hidden relation between data, what can be 

used to create models that predict some behavior or 

describe some common properties of analyzed objects. In 

this paper, we combine methods of DM with tools of 

reliability analysis to evaluate availability of investigated 

object. An important step in reliability evaluation of any 

object is selection of an appropriate mathematical 

representation. One of the possible mathematical 

representations is structure function that expresses 

dependency of system state on states of its components. In 

this paper, we propose a new method for construction of 

the structure function from uncertain or incomplete data. 

This method is developed based on application of Fuzzy 

Decision Tree. 

Keywords: Fuzzy Decision Tree, Multi-State System, 

Structure Function, Uncertainty 

1. INTRODUCTION 

The reliability is important characteristic of any 

object/system in step of its development and exploitation. 

The reliability analysis of any object is possible based on 

the mathematical representation (description). The 

mathematical representation of an initial object (system) 

and estimation of its reliability properties includes next 

steps [1]: 

1. the definition of number of performance levels for 

a system model; 

2. the mathematical representation of system model; 

3. the quantification of the system model (calculation 

of indices and measures); 

4. the measuring of the system behavior.  

The first step in reliability analysis agrees with the 

definition of mathematical model type depending on the 

number of performance levels. Two types of models can 

be recognized. These models are named as Binary-State 

Systems (BSSs) and Multi-State Systems (MSSs). 

A BSS admits only two states in investigation of the 

system and its components: perfect functioning and 

complete failure. However, in practice, many systems can 

go through different performance levels between these 

two extreme states [1, 2]. A MSS is a mathematical model 

that is used to describe such systems since it allows 

defining more than two levels of performance [2, 3, 4]. 

The second step supposes the definition of the 

representation type of mathematical model. There are 

different types of mathematical representations of a 

system. In reliability engineering, structure function, fault 

trees, reliability block diagrams, Markov models and Petri 

nets are typically used for the mathematical representation 

of real systems under study.  

The definition of number of performance levels and 

representation type of mathematical model cause the 

quantification analysis of investigated object/system at 

the third step. As a rule the reliability is estimated by set 

of specific indices and measures [1]. Some most used of 

them are system availability, reliability function, mean 

time to failure (repair), mean time between failures, faults 

frequency, importance measures. There are different 

methods and algorithms in reliability engineering to 

calculate these and other indices and measures and their 

values are used for estimation of investigated 

object/system behavior in point of view of reliability at 

the fourth step. 

MSS structure function is one of possible 

mathematical model of investigated object/system. In this 

case, a system is modeled as a mapping that assigns 

system state to all possible combinations of component 

states. MSS allows describing of the system behavior in 

detail and taking into account preceding states before 

failure. This mathematical model permits to represent the 

system with any topological complexity and structure by 

application of the structure function. The exactness and 

undependability on complexity are principal advantages 

of MSS structure function. But the structure function is 

constructed based on complete information about the 

system structure and possible components states. 

However, there are a lot of practical problems when the 

complete information is not available because data from 

which it can be derived cannot be collected. As a rule, 

other mathematical representations and methods for 

evaluation of system reliability are used in these 

situations [5, 6, 7]. In this paper, we propose a new 

method for construction of the structure function from 

uncertain or incomplete data.  

There are two principal factors of uncertain data in 

structure function construction. The first are ambiguity 

and vagueness of initial data. It means that initial data 

about the system operation are collected based on (a) 

measurement that can be inaccurate and with an error or 

(b) experts that can have different opinions on one 

situation. Therefore, values of states of the components or 

system performance level cannot be indicated as exact 

(integers). The fuzzy logic makes it possible to define the 

structure function in a more flexible form for such data 

than the probabilistic approach. So, non-exact values are 

the first factor of the uncertainty of initial data, and it can 

be expressed using fuzzy values [5, 6, 8]. 

Secondly, situations in which it is impossible to 

indicate some values of the system components states or 

performance level can exist. For example, it can be very 

expensive, or it needs unacceptable long time. This 

implies that some information about the system behavior 

can be absent. Therefore, the data are incomplete.  

In this paper, we propose a method based on the 

application of an Fuzzy Decision Tree (FDT) for 

construction of the structure function. FDTs allow taking 
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into account uncertainties of two types [9]. The first of 

them is ambiguity of initial data. This can occur when it is 

expensive to obtain all data about real system behavior, or 

there are poorly documented data. This type of 

uncertainty is covered by fuzzy values in an FDT. The 

second type of uncertainty agrees with incompletely 

specified initial data. As a rule, if the exact values of the 

actual data about the system behavior cannot be 

determined, we need to rely on more data to get additional 

information necessary to correct the used theoretical 

model [6, 12]. An FDT allows reconstructing these data 

with different levels of the confidence [10, 11]. 

2. MULTI-STATE SYSTEM STRUCTURE 

FUNCTION AND AVAILABILITY 

As a rule two types of models are used in reliability 

analysis. The first one is known as a BSS. This model is 

based on the assumption that the system and all its 

components can be in one of only two possible states – 

functioning (labelled by number 1) and failure 

(represented by number 0). A general MSS permit 

defining different number of states for the system and for 

its components. Let us suppose that the system can be 

divided into n components (subsystems). If we assume 

that the system has M possible states and its i-th 

component, for i = 1,…,n, can be in one of mi states. 

The dependency between states of individual system 

components and system state is expressed by a special 

relation that is known as structure function. The structure 

function as a mathematical model was introduced in 

reliability engineering as one of the firsts [13]. 

The structure function (x) = (x1,…, xn) of a MSS 

has the following [14]: 

(x): {0,…, m1-1}×…×{0,…,mn-1}{0,…,M-1}, (1) 

where (x) defines system state from complete failure 

((x) = 0) to perfect functioning ((x) = M -1); x = 

(x1,…, xn) is a state vector; xi is the i-th component state 

that changes from complete failure (xi = 0) to perfect 

functioning (xi = mi -1). 

A special type of MSSs is a homogenous system, in 

which m1 = … = mn = M. The structure function of BSS 

based on (1) is defined if m1 = … = mn = M = 2. 

Typically investigated system is coherent and its 

component failure doesn’t cause the system functioning 

improving [3, 4, 13]. This means: (a) the system structure 

function is monotone: (xi, x) ≤ (xj, x) for any xi ≤ xj; and 

(b) there are no irrelevant components in the system. 

For example, consider a twin-engine jet and it 

representation as MSS structure function [15]. It can land 

normally if one engine is at full power and the other 

engine is at half power. It can land on a foamed runway if 

one engine is at full power or if both engines are at half 

power. It will crash if one engine is at half power and the 

other engine is failed. This jet’s structure function is is 

function of two variables (n = 2) with three values (m = 3) 

and is defined in Table 1. 

Table 1. Truth table of the structure function 

x1 0 0 0 1 1 1 2 2 2 

x2 0 1 2 0 1 2 0 1 2 

(x) 0 0 1 0 1 2 1 2 2 

 

The structure function (1) allows calculation some of 

reliability indices and measures. One of them is system 

availability and unavailability. The system unavailability 

(5) for MSS is considered as probability of system failure 

and is defined identically [3, 14]: 

U = Pr{(x) = 0}. (2) 

Availability of MSS must be considered for some 

different performance levels and the availability (5) can 

be transformed into two types of measures for MSS [3, 4, 

13]: system availability and probability of system 

performance level. The probability of system performance 

level is defined for every performance level as: 

Aj = Pr{(x) = j}, j = 1,…, M -1. (3) 

MSS availability is defined as follows [3, 4, 13]: 

A(j) = Pr{(x) ≥ j}, j = 1,…, M -1 (4) 

The probability of the system performance levels 

according (3) is initial measure that allows computing the 

system availability and unavailability. In papers [3, 4, 13] 

authors shown that any system state j (j = 1,…, M -1) for 

fixed components state vector of a coherent MSS 

according to the assumption (b) can be calculated as the 

product of probabilities of components states: 

pis = Pr{xi = s}, s = 0, …, mi -1 (5) 

Consider a twin-engine jet availability and 

unavailability. The MSS structure function of this object 

is defined in Table 1. The unavailability (2) of this twin-

engine jet is: 

U = p10p20 + p10p21 + p11p20, (6) 

and its probabilities for performance levels “1” and “2” 

according to (3) are: 

A1 = p
10
p

22
 + p

11
p

21
 + p

12
p

20, 

A2 = p
11
p

22
 + p

12
p

21
 + p

12
p

22
, 

(7) 

and its availabilities for performance levels “1” and “2” 

according to (4) are calculated as: 

A(1) = A1 + A2 = p
10
p

22
 + p

11
p

21
 + p

11
p

22
 + p

12
 

A(2) = A2 = p
11
p

22
 + p

12
p

21
 + p

12
p

22
. 

(8) 

Suppose that this system has equal component 

probabilities that are defined as: p
10

 = p
20

 =0.1, p
11

 = p
21

 

=0.2 and p
12

 = p
22

 =0.7. The system unavailability for this 

data is U = 0.05, probabilities of the system performance 

levels are A1 = 0.18 and A2 = 0.77, and this MSS 

availabilities for two performance levels are A(1) = 0.95 

and A(1) = 0.77. 

The structure function also allows calculating the 

boundary system states [14], minimal cut/path sets [15] 

and importance measures [16]. However, defining 

structure function as equation (1) for a real application 

can be a difficult problem. 

3. STRUCTURE FUNCTION CONSTRUCTION 

BASED ON UNCERTAIN DATA 

As a rule, the structure function can be defined as a 

result of the system structure analysis or based on expert 

data [12, 17]. In system structure analysis, the system is 

interpreted as a set of components (subsystems) with 
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correlations. These correlations can be defined by 

functional relations that are interpreted as the structure 

function (1). For example, such correlations are defined 

for a twin-engine jet structure unction (Table 1). 

However, there are many structure-complex systems for 

which correlations and/or connections of components are 

hidden or uncertain (e.g. power systems, network 

systems). As a rule, other methods are used in reliability 

estimation for such systems [5, 18]. Construction of a 

structure function based on the expert data requires 

special analysis and transformation of initial data [12, 19]. 

We suggest the new method for construction of the 

structure function (1) that is based on the application of an 

FDT.  

In terms of Data Mining, the structure function can be 

interpreted as a table of decisions [9, 20], where state 

vector x = (x1,…, xn) is interpreted as a set of input 

attributes and value of the structure function as an output 

attribute. This table of decisions can be constructed based 

on an FDT for all combinations of the input attributes. So, 

values of the structure function can be defined for all 

combinations of component states using the FDT: 

component states are interpreted as FDT attributes, and 

the structure function value agrees with one of M values 

(classes) representing system performance levels. The 

FDT is inducted based on some samples (not all) of the 

inputs and output attributes. In case of construction of the 

structure function, the samples are state vectors with the 

corresponding function value. These samples have to be 

collected as initial information about the system.  

The method proposed in this paper includes the 

following steps: 

 collection of data into the repository according to 

requests of FDT induction; 

 representation of the system model in the form of 

an FDT that classifies components states according 

to the system performance levels; 

 construction of the structure function as a decision 

table that is created by inducted FDT. 

Collection of data in the form of a repository is 

provided by the monitoring of values of system 

component states and system performance level. This 

repository can be presented in the form of a table where 

the columns agree with the input and output attributes. 

The number of the input attributes is n and the i-th has mi 

possible values (the i-th column includes mi sub-

columns). Every row contains a real sample of 

components states and the corresponding system 

performance level. 

For example, let us consider the offshore electrical 

power generation system presented in [2]. The purpose of 

this system (Fig. 1) is to supply two nearby oilrigs with 

electric power. The system includes 3 generators: two 

main generators A1 and A3, and standby generator A2. 

Both main generators are at oilrigs. In addition, oilrig 1 

has generator A2 that is switched into the network in case 

of outage of A1 or A3. The control unit U continuously 

supervises the supply from each of the generators with 

automatic control of the switches. If, for instance, the 

supply from A3 to oilrig 2 is not sufficient, whereas the 

supply from A1 to oilrig 1 is sufficient, U can activate A2 

to supply oilrig 2 with electric power through the standby 

subsea cables L. This implies that the system consists of 5 

relevant components (n = 5): generators A1, A2, and A3, 

control unit U, and the standby subsea cables L. 

Furthermore, according to the description of the system 

activity in [2], we assume that the system and all its 

components have 3 states/performance levels (M = 3 and 

mi = 3, for i = 1,…,5). Next, let us denote variables 

defining states of the system components in the following 

way: main generators A1 and A3 as x1 and x3 respectively, 

standby generator A2 as x2, and control unit U and standby 

subsea cables L as x4 and x5 respectively. 

  
Fig.1 – Outline of the offshore electrical power generation 

system [2] 

Let us suppose monitoring of the offshore power 

generation system that allowed collecting 108 (from 243 

possible) samples of the system behaviour. Some of them are 

shown in Table 2. The monitoring of this system permitted 

obtaining information about some combinations of component 

states and the corresponding performance levels of the system. 

However, this information is not complete. This uncertainty is 

caused by the ambiguity of classification of component states 

and system performance levels into classes of exact values [12, 

20]. Therefore, these data is interpreted as quasi-fuzzy data. 

Table 2. Data obtained based on the monitoring of the offshore electrical power generation system 

No x1 x2 x3 x4 x5 (x) 

0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 

1 0.8 0.2 0.0 0.8 0.1 0.1 0.7 0.2 0.1 0.8 0.2 0.0 0.7 0.3 0.0 0.7 0.3 0.0 

2 0.8 0.1 0.1 0.7 0.1 0.2 0.6 0.2 0.2 0.8 0.2 0.0 0.0 1.0 0.0 0.8 0.1 0.1 

3 1.0 0.0 0.0 0.7 0.3 0.0 0.9 0.1 0.0 0.0 0.9 0.1 0.7 0.2 0.1 1.0 0.0 0.0 

 … … … … … … … … … … … … … … … … …  

15 0.0 0.2 0.8 0.9 0.1 0.0 0.2 0.8 0.0 0.0 0.1 0.9 0.0 0.1 0.9 0.0 0.6 0.4 

16 0.0 0.1 0.9 1.0 0.0 0.0 0.0 0.1 0.9 0.1 0.6 0.3 0.0 0.2 0.8 0.2 0.5 0.3 

17 0.0 0.2 0.8 0.1 0.6 0.3 0.2 0.5 0.3 0.2 0.7 0.1 0.0 0.3 0.7 0.1 0.1 0.8 

 … … … … … … … … … … … … … … … … …  

108 0.0 0.0 1.0 0.0 0.1 0.9 0.0 0.1 0.9 0.0 0.1 0.9 0.0 0.8 0.2 0.0 0.0 1.0 
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For example, the first row in Table 2 indicates the nonworking 

(x1 = 0) and insufficient (x1 = 1) states of generator A1 with 

possibility of 0.8 and 0.2 respectively, while the possibility of 

the working state (x1 = 2) is 0. In case of stable generator A2, 

the state is indicated as nonworking (x2 = 0) with possibility of 

0.8 and as other values (x2 = 1 and x2 = 2) with possibilities of 

0.1. States of main generator A3, control unit U and the 

standby subsea cables L are defined similarly. The system 

state is interpreted as a failure for this components states with 

the possibility 0.7 ((x) = 0) and as the sufficient state ((x) = 

1) with the possibility 0.3, while the state of perfect operation 

((x) = 2) is not indicated since its possibility is 0. 

The data obtained based on the monitoring and 

presented in Table 2 is interpreted as fuzzy data [21]. This 

data is incompletely specified because we have 108 of all 

243 combinations of components states. In this paper, we 

suggest the new method for construction of the structure 

function based on an FDT. This method allows reducing 

indeterminate values and obtaining a completely specified 

structure function.  

Therefore next step of the method is induction of FDT 

for representation of system mathematical model. A 

decision tree is a formalism for expressing mappings of 

input attributes (components states) to output 

attribute/attributes (system performance level), consisting 

of an analysis of attribute nodes (input attributes) linked 

to two or more sub-trees and leafs or decision nodes 

labeled with classes of the output attribute (in our case, a 

class agrees with a system performance level) [21]. An 

FDT is one of the possible types of decision trees that 

permit operating with fuzzy data (attributes) and that use 

methods of fuzzy logic. The uncertainty may be present in 

obtaining numeric values of the attributes (system 

components states) or in obtaining the exact class (system 

performance level) where the instance belongs to. 

There are different methods for inducting an FDT [10, 

22, 23]. An FDT induction is implemented by the 

definition of the correlation between n input attributes 

{A1,…, An} and an output attribute B. The construction of 

the system structure function supposes that the system 

performance level is the output attribute and component 

states defined by a state vector are input attributes. Each 

input attribute (component state) Ai (1  i  n) is 

measured by a group of discrete values ranging from 0 to 

mi -1, which agree with the values of states of the i-th 

component: {Ai,0,…, Ai,j,…, Ai,mi-1
}. An FDT assumes 

that the input set A = {A1,..., An} is classified as one of 

the values of output attribute B. Value Bw of output 

attribute B agrees with one of the system performance 

levels and is defined as M values ranging from 0 to M -1 

(w = 0,…, M -1). The correlation between the 

terminologies and basic concepts of FDTs and reliability 

analysis are shown in Table 3. 

A fuzzy set A with respect to a universe U is 

characterized by a membership function μA : U  [0,1], 

which assign an A-membership degree, μA(u), to each 

element u in U. μA(u) gives us an estimation that u 

belongs to A. The cardinality measure of the fuzzy set A 

is defined by M(A) = uU μA(u), and it is measure of size 

of set A. For u  U, μA(u) = 1 means that u is definitely a 

member of A and μA(u) = 0 means that u is definitely not 

a member of A, while 0 < μA(u) < 1 means that u is a 

partial member of A. If either μA(u) = 0 or μA(u) = 1 for 

all u  U, A is a crisp set. The set of input attributes A is 

crisp if μA(u) = 0 or μA(u) = 1.  

For example, let us consider input attributes A = {A1, 

A2, A3, A4, A5} and the output attribute B for the offshore 

electrical power generation system in Fig. 1. This system 

is represented by 5 input attributes. Each input attribute is 

defined as: Ai = {Ai,0, Ai,1, Ai,2}, for i = 1,…, 5, and the 

output attribute is B = {B0, B1, B2}. The values of the 

input attributes and the output attribute are obtained based 

on the data from Table 2 and are used for the FDT 

construction as a training test. We propose to induct the 

FDT using the method based on the cumulative 

information estimates proposed in [20, 22]. These 

estimations allow inducting FDTs with various properties. 

Criteria for building non-ordered, ordered or stable FDTs, 

as well as, development of this method have been 

considered in [24]. 

Table 3. Correlation between the terminologies of FDTs and 

reliability analysis 

FDT System reliability 

Number of input 

attributes: n 

Number of the system 

components: n 

Attribute Ai (i = 1,…, n) System component xi  

(i = 1,…, n) 

Values of attribute Ai:  

  {Ai,0,…, Ai,j,…, Ai,mi-1
} 

State of component i:  

  {0, …, mi-1} 

Output attribute B System performance level (x) 

Values of output 

attribute B:  

  {B0, …, BM-1} 

Values of system performance 

level: 

  {0, …, M-1} 

Decision table  Structure function 

 

The FDT resulted from the training set presented in 

Table 2 has been inducted by application of the 

cumulative information estimates using the method in 

[23]. This FDT is presented in Fig. 2. The nodes of this 

FDT agree with the input attributes. Every node has 3 

branches according to the values of the corresponding 

input attribute from the training test (Table 2). Every 

branch correlates with some values of the output attribute. 

The set of output attribute values in a branch is named as 

a leaf if the analysis finish and one of the values of the 

output attribute can be chosen according to algorithms 

proposed in [20, 24]. 

This FDT can be used for the analysis of all possible 

states of system components to construct the structure 

function of the offshore electrical power generation 

system. This process is considered below. 

The construction of the structure function based on 

FDT is provided by the induction of decision table. 

According to [20], FDTs allow developing fuzzy decision 

rules or a decision table. A decision table contains all 

possible values of input attributes and the corresponding 

values of the output attribute that is calculated using the 

FDT. Such decision table agrees with the structure 

function. This implies that all possible combinations of 

values of the component states (all state vectors) have to 

be analyzed by the FDT to classify state vectors into M 

classes of the system performance levels. 

Each non-leaf node is associated with an attribute 
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Ai  A, or in terms of reliability analysis: each non-leaf 

node is associated with a component. The non-leaf node 

agreeing with attribute Ai has mi outgoing branches. The 

s-th outgoing branch (s = 0,…, mi -1) from the non-leaf 

node corresponding to attribute Ai agrees with state s of 

the i-th component (xi = s). A path from the root to a leaf 

defines one or more state vectors (according to the values 

of the input attributes (component states) occurred in the 

path) for which the structure function takes value 

determined by the value of the output attribute. If any 

input attribute is absent in the path, all possible states 

have to be considered for the associated component. 

For example, consider construction of the structure 

function of the offshore electrical power generation 

system from Fig. 1 using the FDT depicted in Fig. 2. All 

possible component states (all state vectors) have to be 

used for calculation of the system performance level by 

the FDT to form the decision table (structure function). 

Let us explain this idea for the first level of the FDT in 

more detail. 

Preliminary analysis of the data obtained based on the 

monitoring (see Table 2) shows that possible values of the 

output attribute B are distributed as follows: value 0 – 

with confidence 0.493, value 1 – with confidence 0.209 

and value 2 – with confidence 0.298. These values are 

implied by frequency of every output value in the training 

test. Attribute A3 is associated with the FDT root. So, 

analysis of the data starts from this attribute. Value A3,0 of 

this attribute makes the output attribute B to be B0 (the 

system is non-operational) with the confidence of 0.805. 

Other variants, B1 and B2, of output attribute B can be 

chosen with the confidence of 0.163 and 0.012 

respectively. If the attribute A3 has other values, i.e. A3,1 

or A3,2, then the analysis is done similarly. 

It is important to note that this method of construction 

of the structure function based on FDTs permits to 

compute (restore) data missing from the monitoring. 

A representation of the system using the structure 

function allows calculating different indices and measures 

for estimation of system reliability. Probabilities of 

system performance levels (3) are one of them. Suppose 

that probabilities of the components states of the offshore 

electrical power generation system have values shown in 

Table 4. In this case, the probabilities of system 

performance levels are: A2 = 0.73, A1 = 0.20 and A0 = 

0.07. Other measures can be computed using the structure 

function too. For example, importance measures for this 

system can be calculated using the algorithms considered 

in [15, 24, 25]. 

Table 4. Components states probabilities 

Component state, 

s 

Probabilities 

p1,s p2,s p3,s p4,s p5,s 

0 0.1 0.2 0.1 0.1 0.1 

1 0.4 0.4 0.4 0.2 0.1 

2 0.5 0.4 0.5 0.6 0.8 

4. CONCLUSION 

The new method for constructing the structure 

function is proposed in this paper. This method allows 

obtaining a structure function based on incompletely 

specified data (for example, data obtained from some 

monitoring). The term “incompletely specified” assumes 

uncertainties of two types.  

The first type of uncertainty deals with some state 

vectors missing from the initial data. In practical 

application, it can be caused by the impossibility to obtain 

or indicate all possible combinations of system 

component states.  
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Fig.2 – Non-ordered FDT constructed based on the data obtained by the monitoring of the offshore electrical power 

generation system from Fig. 1 
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The second type of uncertainty results from ambiguity 

of initial data. In this case, the system performance level 

and components states can be defined with some 

possibilities. According to the typical definition of the 

structure function (1), performance level can have only 

one value for every state vector from set {0, …, M -1}. 

However, the boundary between two neighbouring values 

can be diffused in real applications. Both such values can 

be therefore indicated with some possibility. The 

proposed method takes such ambiguity into account and 

permits indicating performance level using some values 

ranging from 0 to M -1 with a possibility that is 

considered in the next steps of the method and is not 

disregarded.  
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