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Abstract: Linear transformation of data in 

multidimensional feature space based on Fisher’s 

criterion is considered. The case of two classes is studied. 

We derived expressions for recurrent calculation of 

weight vectors which form new features. Examples offered 

shows that the newly found features which represent the 

data more accurately make it possible to achieve linear 

separability of classes which remains impossible using 

the technique of principal components and the classic 

Fisher’s linear discriminant. 

Keywords: the classic Fisher’s linear discriminant, 

separability in pattern recognition. 

1. INTRODUCTION  

The technique of principal components (PCA) is well-

known in pattern recognition theory [1]; it is widely used 

to reduce dimensionality of feature space and represent 

the data in the two dimensional space of the first two 

principal components. PCA is not intended for 

recognition of objects in feature space. However, it is 

often used for that purpose due to simplicity of data 

representation on a plane. Fisher’s linear discriminant 

(LDF) is also applied to tasks of pattern recognition [2]. It 

reduces the dimensionality of feature space from its initial 

value to unit projecting multidimensional data onto a 

straight line. Unlike PCA, the LDF technique exploits the 

information on differences between the statistical data on 

classes to find an optimal solution. It is possible to 

improve the quality of classification by LDF technique 

using some larger number of features instead of just one 

for recognition.  

2. FISHER’S LINEAR DISCRIMINANT 

Retrieval of the optimal weight vector (Fisher’s linear 

discriminant) for arbitrary distributions of two classes is 

described in detail in [2]. Fisher’s linear discriminant may 

be defined as vector W for which the following functional 

criterion reaches its maximum: 
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In this formula 1m  и 2m  - mean values of classes, 

projected on W, 
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1s  and 
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2s  sample intra-class scattering 

for the two classes. Provided that J(W) = max, the 

distance between the projections of classes onto W 

reaches its maximum for W. 

According to [2] the equation (1) may be rewritten in 

the following form 

( )
T

B

T

W

J 
W S W

W
W S W

. (2) 

where 
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B   S M M M M  is the matrix of cross-

class scattering, 1M  and 2M  vectors of mean values for 

two classes, 1 2W  S S S  - the matrix of intra-class 

scattering, 1S  and 2S  matrices of intra-class scattering 

within corresponding classes, 
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iX - i-th input vector of j-th class, 1n  and 2n - the 

number of members of each class. Analysis of this 

formula demonstrates [2] that the maximum ( )J W  may 

be reached when 
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For the original n-dimensional feature space, we can 

rewrite this expression in the following form 
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3. CONSTRUCTING OF FEATURE SPACE WITH 

THE USE OF FISHER’S CRITERION 

We can project all the data onto a plane normal to 

nW . Then, using Fisher’s criterion one may find the best 

weight vector on that plane which is an (n-1)-dimensional 

feature space in its turn. Apparently, we have on that 

plane [3, 4]: 
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When calculating 1

1n



S , the reversible matrix may 

appear degenerated. In that case one may calculate a 

pseudo-inverse matrix instead of the explicit inverse one. 

To that end, the MATLAB system should include pinv(X) 

instead of inv(X). 
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where 
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where N1 is the number of elements in set 1 , it follows 

from (7) that 
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Finally, in consideration of (6) we derive from (5) 
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or substituting expression (10) in (11) we obtain 
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In an (n-2)-dimensional feature space we derive, 

respectively 
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and so on. 

4. EXPERIMENTS WITH LINEARLY SEPARABLE 

CLASSES 

For experimental studies, we have chosen two sets of 

3-dimensional data f1 and f2 presented in Table 1. 

 

                                                            Table 1 

f1 

0.7 0.3 1.2 

0.5 0.7 1.0 

0.4 1.0 0.4 

0.7 0.7 1.0 

0.6 0.6 1.5 

0.6 0.6 1.2 

0.6 0.5 1.0 

0.4 0.9 0.6 

0.5 0.6 1.1 

0.8 0.3 1.2 

 

f2 

0.4 0.2 0.8 

0.2 0.2 0.7 

0.9 0.3 0.5 

0.8 0.3 0.6 

0.5 0.6 0.4 

0.6 0.5 0.7 

0.4 0.4 1.2 

0.6 0.3 1.0 

0.3 0.2 0.6 

0.5 0.5 0.8 

It is known that these sets are linearly separable in 3-

dimensional space. Let us apply to them consecutively the 

technique of principal components, Fisher’s linear 

discriminant and Fisher’s linear discriminant with an 

extra feature. Calculations are carried out using the 

MATLAB system. 

% TECHNIQUE OF PRINCIPAL COMPONENTS 

A=load('f1.txt') 
B=load('f2.txt') 
C=[A;B] 
gg=['A'; 'A'; 'A'; 'A'; 'A'; 'A'; … 

'A'; 'A'; 'A'; 'A'; 'B'; 'B'; 'B';… 

'B'; 'B'; 'B'; 'B'; 'B'; 'B'; 'B']; 
g=cellstr(gg) 
[PC,SCORE]=princomp(C) 
gscatter(SCORE(:,1),SCORE(:,2),… 

g,'','xos') 

Results of running the above program are presented in 

Fig. 1. It shows clearly that the technique of principal 

components does not ensure linear separability of classes. 
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Fig. 1 

The next program implements the classic technique of 

Fisher’s linear discriminant and the technique of Fisher’s 

linear discriminant with an extra feature. 

 
% CLASSIC FISHER’S LINEAR DISCRIMINANT 
load ('f1.txt') % loading of the 

% matrix of Class 1 

load ('f2.txt') % loading of the 

% matrix of Class 2 

A1=f1 

A2=f2 

n1=length(A1) % number of members of 

% Class 1 

n2=length(A2) % number of members of 

% Class 2 

m1= mean(A1) 
m2= mean(A2) 
E1=(n1-1)*cov(A1) 
E2=(n2-1)*cov(A2) 
E=E1+E2 
W=inv(E)*(m1-m2)' 
w=W/norm(W) % normalization 
X1=A1*w % Class 1 projections on w 
X2=A2*w % Class 2 projections on w 
t=0.5:0.1:1.40 
x1=hist(X1,t) 
x2=hist(X2,t) 
figure 
plot(x1,'-*g') 
hold on 
plot(x2,'-or') 

The result of classic Fisher’s discriminant analysis can 

be shown in the figure [4]. Apparently, no linear 

separability of classes is found in this case either. 

% PROGRAM CONTINUED 

% FISHER’S LINEAR DISCRIMINANT  

% WITH AN EXTRA FEATURE.  
for i=1:10  
B1(i,:)=A1(i,:)-X1(i,:)*w' 
end 
for k=1:10 
B2(k,:)=A2(k,:)-X2(k,:)*w' 
end 
mB1=mean(B1) 
mB2=mean(B2) 
h1=inv(w'*E*w*(w*w')+E) % further we 

% use the formula(12)derived above 
h3=(m1-m2)' 

h5=w'*(m1-m2)'*w 
h6=h3-h5 
W22=h1*h6 
w22=W22/norm(W22) 
Y1=B1*w22 % Class 1 projections on w2 
Y2=B2*w22 % Class 2 projections on w2 
figure 
scatter(X1,Y1) 
hold on 
scatter(X2,Y2) 
% number of errors is equal to 0 

 

 
Fig. 2 

The result of running this program (Fig. 2) shows 

clearly that an extra feature helped to find a weight vector 

ensuring complete linear separability of Classes f1 and f2. 

The same result was obtained when finding weight vector 

with a simple single-layer perceptron. 

We assume the degree of classes separation and the 

classification error as the proportion of points that fall in 

the intersection of classes (intersection of classes convex 

hulls). In the case of complex configurations of classes 

distributions the winnings can be substantial. For two 

classes shown in Fig. 3, the use of the Fisher test gives the 

weight vector w shown in the figure, with a total 

classification error equal to 33%. On the plane (Fig. 3) it 

is easy to find a vector w1 that separates these classes 

accurately. 
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Fig. 3 

Experiments conducted with other data demonstrated 

that an extra feature does improve separability of classes. 

It may be important for certain tasks, especially those 

requiring complete separability of classes. 
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5. CONCLUSION 

The technique of Fisher’s linear discriminant is 

considered. To improve the quality of linear recognition 

of two classes it is suggested to use extra features that 

may be retrieved with the use of Fisher’s criterion as 

orthogonal weight vectors in spaces of lower 

dimensionality. We derived a recurrent expression for 

calculating such extra features consecutively. The 

examples presented above demonstrates that using a 

single extra feature a complete linear separability of two 

classes may be achieved, not detectable by either the 

technique of principal components or the classic Fisher’s 

linear discriminant. Other criteria of distance between 

classes may also be used for the suggested approach. 
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