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Abstract: This paper presents a generalized approach for 

computing image gradient. It is predominantly aimed at 

detecting unclear and in certain circumstances even 

completely invisible borders in large 2D and 3D texture 

images. The method exploits the conventional approach of 

sliding window. Once two pixel/voxel sets are sub-

sampled from orthogonal window halves, they are 

compared by a suitable technique (e.g., statistical t-test, 

SVM classifier, comparison of parameters of two 

distributions) and the resultant measure of difference 

(e.g., t-value, the classification accuracy, skewness 

difference of two distributions etc.) is treated as the 

gradient magnitude. The bootstrap procedure is employed 

for increasing the accuracy of difference assessment of 

two pixel/voxel sets. 
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1. INTRUDUCTION  

In many occasions, there is a strong need for detection 

of borders of objects, which look like patterns of random 

textures. Such borders could be hardly detected by human 

visual system when textures differ by their high-order 

statistics only [1], [2]. Recently, some advanced methods 

of detecting hardly visible borders between the random 

image textures have been suggested [1], [3]. Moreover, it 

was experimentally proven that these methods 

capitalizing on so-called “generalized gradient” are able 

to highlight the border which is completely invisible for 

human eye. For example, the problem of weak birders 

detection may occur while differentiation of malignant 

tumors and atelectasis (partial collapse of the lungs) on 

native CT images of thorax [4], [5]. 

The purpose of this particular paper is to present 

results of an experimental study of the ability of the 

generalized gradient method to highlight hardly visible 

borders of objects. The study was conducted using three 

different groups of images. They were comprised by 3D 

synthetic images and specially-designed physical gelatin 

phantom made by authors and scanned using Siemens 

Somatom Definition AS tomograph. Finally, the utility of 

the method was examined on the problem of borders 

detection between malignant lung tumors and the 

atelectasis regions based on 3D CT images of 40 lung 

cancer patients. 

The first version of the generalized gradient method 

was introduced in [2] as so-called classification gradient 

and slightly improved afterwards. The classification 

gradient method makes use conventional technique of 

calculating image gradient at each pixel position by 

means of comparing pixel/voxel values taken from 

orthogonal halves of appropriately sized sliding window. 

However, apart from the traditional approaches where the 

gradient magnitude is computed simply as the intensity 

difference (estimated by convolution with one or other 

matrix of weights), the generalized gradient method treats 

the voxel values taken from window halves as two 

samples which need to be compared in a suitable way. 

Once it is done, the value of the corresponding 

dissimilarity measure is treated as a “gradient” value at 

the current sliding window position for a given 

orientation X , Y  or Z . One may prefer to employ a 

sophisticated technique of comparing two samples of 

voxels such as the voxel classification procedure 

performed with the help of an appropriate classifier [3]. In 

these circumstances, the resultant classification accuracy 

is treated as the local image gradient magnitude, which is 

varied in the range of 0-100%. Along with recent 

classifiers, the sets of voxels may, for example, be 

compared in a statistical manner using conventional t-test. 

In this case, the resultant t-value is treated as a measure of 

dissimilarity that is as the signed local “gradient” value. It 

should be noted that despite the fact that t-test is also 

compares mean values of two voxel samples, it is much 

more sensitive to their differences because it takes into 

account the variances of two distributions. 

2. METHOD  

The above informal definition of the generalized 

gradient presents the essence of the method used in 

present study. The exact computational procedure is a bit 

more complicated. A list of key details which needs to be 

considered for better understanding and correct 

implementation of the method is given below. 

Despite the method may be used for computing 

generalized gradient maps of 2D images, it is better suited 

for 3D because it is supposed to deal with relatively larger 

samples of voxels taken from sliding window halves. 

It is clear that with no respect to the nature and 

underlying mechanism of the procedure used for 

comparing two voxel sets taken from adjacent window 

halves, it is highly desirable to have the resultant 

dissimilarity estimate as precise as possible. In order to 

achieve this, a bootstrap multi-step meta-procedure can be 

employed (see, for example, a good tutorial [6] written for 

non-statisticians). In practice, it particularly means that at 

each computational step not the whole amount but a 

fraction of voxels should be sub-sampled in a random 

manner from window halves for executing chosen 

comparison procedure such as t-test. This step should be 
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repeated about 100 times. Then the final dissimilarity 

measure is computed as a mean value of corresponding 

particular dissimilarity values that is as the mean t-value 

computed over the all 100 particular trials in case the 

t-test procedure is employed. The same holds true in case 

the final clustering accuracy value is calculated based on 

particular classification steps, etc. The natural payment 

for the increased accuracy of assessing the difference by 

means of bootstrap is the growth of computational 

expenses for about two orders. For instance, in case of 3D 

images the total number of elementary t-tests which need 

to be performed resides around 300 with about 100 tests 

accomplished for computing gradient components 
xG , 

yG and 
zG along each of three orthogonal image axes X , 

Y  and Z . 

Once the generalized gradient components
xG , 

yG and 

zG are computed using the procedure of voxel set 

comparison, the gradient magnitude 
zyxG ,,
 at a particular 

3D voxel position ),,( zyx  is calculated as the Euclidean 

norm of the vector. In general, the sliding window may 

have not three orthogonal orientations of voxel sampling 

like traditional axes X , Y  and Z  but some alternative 

configurations too. In this study, we also utilized a bit 

more sophisticated configuration of sliding window 

depicted in Fig.1. It supposes to use six directions 

equally-spaced in 3D. Sampling in each direction is 

performed using corresponding spherical sub-windows 

with radius R . Moreover, the sub-windows are moved 

apart from the central voxel at the distance d . This was 

done to address the problem of smooth and wide object 

borders. The resulting generalized gradient value at a 

particular 3D voxel position ),,( zyx  is calculated from 

the particular values in each direction 
iG , }6,...,1{i  as 

  2/16

1

2,,  


i i

zyx GG .  

 

Fig. 1. Configuration of the gap sliding window 

3. MATERIALS  

In this study we used three kinds of images containing 

regions with weak borders which are difficult to detect by 

human visual system: synthetic 3D images, CT image of 

the physical gelatin phantom and CT images of chest of 

40 patients. Image regions did not form coherent spatial 

pattern, but rather looked like random textures with 

difference being the probability density functions of 

values inside them. 

3.1 SYNTHETIC IMAGES 

For this experiment, we created a synthetic 3D image 

with size (512 × 512 × 50)  voxels. Inside this volume a 

parallelepiped was placed with distances along the 

corresponding volume margins equal to 128, 128 and 12 

voxels. The grey values of the voxels of the inner and 

outer regions were drawn from two Pearson distributions 

with different parameters, having the same mean value of 

200  and standard deviation 20 , but different 

skewness values. The inner part was filled with values to 

have the skewness 
in  to be as close as possible to 1 

taken throughout all the image slices, and voxels from the 

outer part were filled with values to have the global 

skewness 2out . It should be noted that due to the 

probabilistic technique of values generation the exact 

equality of their mean, standard deviation and skewness 

to the expected ones is hardly possible. 

The results are depicted on Fig.2. This experiment 

shows the capability of the generalized gradient (GG) 

maps calculated with different presets to detect weak 

borders, and the results are as they were expected. 

Fig.2(c) and Fig.2(d) show the clear border between inner 

and outer regions. We used the SVM classification 

accuracy as the difference measure improved by the 

bootstrap procedure and the gap sliding window. No a 

priory information about border orientation, width, 

smoothness or values distribution was used. 

  
a)                           b) 

  
c)                            d) 

Fig. 2. a) Original synthetic image; b) GG map using t-test, 

R = 4, d = 2; c) GG map using SVM, gap window’s R = 3, 

d = 1; d) GG map using SVM, R = 4, d = 2 

Fig.2(b) depicts the GG map calculated using 

conventional t-test to estimate the dissimilarity measure 

between values sampled from the gap window halves. 

 Though this map calculation is much faster than of 

the previous ones, in this particular case it gives no 

positive outcome, because t-test does not react on the 

difference of skewness and higher orders moments. 

However, further we will show that it also provides useful 

results retaining the same relative advance in speed when 

used for processing of real images. 

3.2 PHYSICAL GELATIN PHANTOM 

The purpose of creating physical phantom was to 

obtain CT image of some real object, consisting of several 

adjacent parts with low relative contrast (layers). The 

phantom was supposed to simulate the commonly 

encountered problem when objects present on 

radiological images have barely visible boundaries. 

To create such a phantom, we used a cylindrical 

container filled with several horizontal layers of gelatin. 

Different levels of CT brightness of each layer were 

obtained by means of dissolving certain precalculated 

amount of radiocontrast agent Omnipaque in liquid 

168 



gelatin before its solidification. To control the amounts of 

radiocontrast agent some provisional measurements of 

Omnipaque solutions’ CT-brightness have been made (see 

Fig.3(a) and Fig.3(b)). 

  

   

Fig. 3. a) General view of the installation; b) cups with 

different amounts of dissolved Omnipaque solution at the 

calibration stage; c) phantom scheme; d) one slice of the 

phantom CT image. 

To the amounts of dissolved Omnipaque solution were 

chosen to increase pure gelatin (reference) CT-brightness 

by 4, 8, 16 and 32 Hounsfield unit (HU) for different 

layers relative to the brightness of the reference layer. The 

reference layer was located at the most bottom of the 

container. The brightest layer was placed next, then the 

others (see Fig.3(c)). Besides, an additional layer of water 

with Omnipaque solution introduced was poured to the 

most top. Thus, one more low-contrast border was made 

between the upper gelatin layer and the liquid layer. 

 

Fig. 4. a), d) – GG maps calculated using gap window with 

R = 4, d = 2 and R = 5, d = 3 respectively, t-test of voxel 

samples used for dissimilarity measure estimation;               

b), e) – GG maps calculated using spherical window with 

r = 5 and r = 8 respectively, t-test of voxel samples used for 

dissimilarity measure estimation; c), f) – GG maps 

calculated using spherical window, dissimilarity measure is 

the difference of mean values sampled from window halves. 

The resultant GG maps of the image in Fig. 3(d) are 

depicted in Fig.4. Left column contains maps calculated 

using t-test to estimate dissimilarity measure and gap 

sliding window, middle column – also t-test and spherical 

sliding window, right column – spherical sliding window 

and dissimilarity measure is the difference of mean values 

sampled from window halves. Sizes of all sliding 

windows along first and second rows were chosen to have 

almost the same number of voxels. Unlike the previous 

synthetic images, the gelatin phantom layers have definite 

differences of mean HU values, that’s why it is fairly easy 

problem to detect weak borders using different presets of 

the method. Nevertheless, this figure may help to choose 

the preferable method’s parameters depending on the 

desired result. The middle layers of gelatin seem to be 

interdiffused and there were no detectable borders. 

3.3 MALIGNANT LUNG TUMORS 

In this study, we used 40 CT images of thorax of 

patients with lung cancer and the atelectasis of a portion 

of the lung as diagnosed by a qualified radiologist and 

confirmed histologically. Thirty-three of them were males 

and remaining seven were females. The age of patients 

ranged from 41 to 80 years with the mean value of 61.7 

years and standard deviation of 8.7 years. CT scanning 

was performed on a multi-slice Volume Zoom Siemens 

scanner with the standard clinical kV and mA settings 

during the one-breath hold. The voxel size of 9 

tomograms was in the range of 0.65-0.74 mm in the axial 

image plane with the slice thickness equal to the inter-

slice distance of 1.5 mm. The voxel size of 31 remaining 

tomograms was 0.68 mm in the axial image plane with 

the slice thickness equal to the inter-slice distance of 5.0 

mm. No intravenous contrast agent was administered 

before the collection of scan data what is a significant 

detail of present study. 

Quantitative assessment of the utility of generalized 

gradient maps in highlighting lung tumor borders was 

performed separately for the first subgroup of 31 native 

CT images with the slice thickness of 5.0 mm and 

remaining 9 images of the second subgroup with the slice 

thickness of about 1.5 mm. Typical examples of original 

CT image ROIs and corresponding gradient map regions 

are presented in Fig.5. 

 

Fig. 5. Example ROIs of the original CT images of lungs (left 

column) and corresponding generalized gradient maps 

(right column). The first row represent case where the 

gradient map is definitely useful for detecting tumor border 

whereas the second and the third rows illustrate cases where 

the utility of maps is unclear and useless respectively. 

As a result of the experiment, on the first subgroup of 

patients it was revealed that the generalized gradient maps 
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were definitely useful for detecting tumor border in 17 

patients (54.8%) whereas in 9 other cases (29.0%) they 

did not provide any help for solving the problem of 

separation the malignant tumor from adjacent atelectasis. 

The efficacy of maps in the rest 5 cases (16.1%) was 

found to be unclear. The results of the similar 

examination of CT scans with reasonably thin slices of 

about 1.5 mm suggest that it appears to be unlikely the 

slice thickness is an important parameter for the method. 

In particular, the distribution of cases between the “yes”, 

“no”, and “unclear” categories was 5 (55.6%), 3 (33.3%), 

and 1 (11.1%) respectively. This is well comparable with 

corresponding results obtained for the first subgroup. 

4. CONCLUSIONS  

In this paper, we have introduced the basic concept of 

so-called generalized gradient and demonstrated its 

abilities and key details on synthetic images, 3D CT 

images of physical phantom as well as CT scans of lung 

of 40 patients with clinically confirmed diagnosis of lung 

cancer. 
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