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Abstract:  

Development of information systems were and still is 

influenced by the approaches and techniques for data 

management. In the past, there was only small data 

amount processed, however, nowadays, the data portions 

to be handled, managed and stored is significant 

delimited by the validity, thus it is necessary to store also 

historical and future valid data. In the environment of 

sensorical data processing, the problem is really massive. 

To get optimal or sub-optimal solution performance, 

parallel and distributed architectures should be 

developed. In this paper, we deal with the grouping 

techniques based on developed pointer layer and 

highlight its impact on performance. All performance 

characteristics are based on column level temporal 

architecture, which is performance resistant to different 

granularities of the changes.  

Keywords: column level architecture, temporality, 

temporal distribution, grouping, pointer layer 

1. INTRODUCTION  

Development in any period of time is influenced by 

the data modelling methodologies and techniques. In the 

past, data were directly stored as a part of the application 

in user defined file structures, but with the need to process 

large data amounts. The challenges of their storing, 

effectivity and performance have been shifted to the 

database approaches. Paradigm of conventional database 

is based on actual data processing, however, nowadays, it 

is necessary to store also historical data and data, which 

will be valid in the future (e.g. planned reconstructions, 

repairs,…). Intelligent systems provide wide range and 

types of the data with specific characteristics and 

granularities of the changes [16] [17]. Also their 

reliability and precision is important factor. Whereas the 

data amount and storing requirements are still rising, real 

time and temporal databases have been developed to 

process and manage evolution and changes over the time. 

In the field of intelligent systems, data effectivity is really 

significant. When we look to the past, temporal 

characteristics have been proposed soon after the database 

system definition to ensure security of the stored data 

provided by backups and log files. However, these 

approaches are not suitable for large data management 

over the time and fast decision making [4] [5], therefore 

later temporal approaches have been proposed [1] [2] [3].  

Standard temporal characteristics are based on 

extension of the primary key by the definition of the 

validity (uni-temporal system) or by using other attributes 

defining time limitations. It can be reflected by two 

attributes bordering start and end point of the validity or 

by just one attribute – start point. In that case, newer state 

should automatically delimit the validity of previous one 

state. However, whereas there is no support for period 

modelling in the database systems, consistency of the 

time validity must be checked by the user explicitly (e.g. 

end point must be higher or equal than start point, each 

object can be modelled by only one state during any 

timepoint or interval) – fig. 1.  

 

 

Fig. 1. Structure of temporal table [7] 

In principles, we can use multi-temporal systems 

defining validity, transaction validity and other attributes 

delimiting time intervals [6].  

2. COLUMN LEVEL ARCHITECTURE 

 The main disadvantage of previously defined temporal 

system is the effectivity, if not all attribute values are 

changed at strictly defined time. Whereas the whole state 

is changed, all attribute values must be stored, which 

brings many problems with storage efficiency and 

workload, as the system contains many duplicates. 

Moreover, delimiting individual attribute changes is also 

complicated, particular values must be compared each 

other to get information about the equality.  

 As a result it brought a significant drop in 

performance. Each table contains information from the 

specific location, each network node provides data from 

multiple sensors (often hundreds or thousands of sensors). 

The problem is that each sensor has a sensitivity and 

speed of the measurement and delivery of results. 

Assessment of the average processing time is not 

appropriate in terms of storage needs for managing 

unchanged values. Another factor is also potential loss of 

data. If we set the unit to second of time, and some of the 

sensors get data in microseconds, we lose one million of 

records that may contain important information and 

activities affecting system performance and response 

management. If the granularity is the smallest one, same 

values are still stored. Therefore, such temporal solution 

is inappropriate. Moreover, we have to store not only 

sensorical data, but also other instance parameters, 

settings, which evolve slowly, and changing them is 

rather rare or sometimes even impossible [8] [9] [10]. 

 Transformation of temporal model based on the whole 

objects is not easy process. First of all, it must provide 

layer for dealing with existing applications managing 

actual or temporal data based on conventional or temporal 

approach. Thus, the first layer contains two access 

methods. The first one deals with only actual states in the 

object level form. The second method contains 

information about the evolution of the attribute values, 
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but provided in the form of object level architecture. 

These data are reflected and provided by the methods of 

views, so any change is registered automatically. 

However, temporal management layer uses attribute 

oriented granularity, which covers the second layer. Non-

actual values of particular attributes are stored in the third 

values – historical values, but also values valid in the 

future. Changes can be planned and are executed 

automatically using pointer layer. Fig. 2 shows the 

architecture of our column level temporal approach. In 

this case, we use centralized architecture. 

 

 

Fig. 2. Centralized column level temporal architecture 

 Internal column temporal level is characterized by the 

temporal table consisting of these attributes [9] [11]: 
 ID_change – got using sequence and trigger – 

primary key of the table. 
 ID_previous_change – references the last change 

of an object identified by ID. This attribute can 
also have NULL value that means, the data have 
not been updated yet, so the data were inserted 
for the first time in past and are still actual.  

 ID_tab – references the table, record of which 
has been processed by DML statement (Insert, 
Delete, Update, Restore).  

 ID_orig - carries the information about the 
identifier of the row that has been changed. 

 ID_column – holds the information about the 
changed attribute (each temporal attribute has 
defined value for the referencing).  

 Data_type – defines the data type of the changed 
attribute: 

o C = char / varchar, N = numeric values 
(real, integer, …), D = date, T = 
timestamp, … 

This model can be also extended by the 
definition of the other data types like binary 
objects.  

 ID_row – references to the old value of attribute 
(if the DML statement was Update). Only update 
statement of temporal column sets not NULL 
value.  

 Operation – determines the provided operation: 
o I = insert, D = delete, U = update, R = 

restore 
The principles and usage of proposed operations 
are defined the in the part of this paper.  

 BD – the begin date of the new state validity of 
an object. 

Data table model is shown in fig. 3.  

 

Fig. 3. Temporal table in column level temporal 

approach [11] 

 Main part of the architecture and also bottleneck of 

the system is just temporal management layer. If the 

number of sensors is high, it does not have to cause 

problems. The most important part is based on the 

frequency and reliability of changes [12].  When moving 

to the milli or even micro or nano-seconds, such temporal 

solutions are insufficient. Moreover, if the whole state is 

updated at defined time, it causes one complex insert 

statement, however for object level architecture, and 

however, such defined solution reflects each attribute as 

separate statement. Concept of column level architecture 

is perfect for size requirements and provide suitable 

performance for the Select statements, however, how to 

keep the system fresh and powerful for long time period 

with many sensors and different granularity? The answer 

is to strengthen the system core part – temporal 

management layer by the means of parallel and distribute 

processing of different signals depending on definitions 

and approaches. Fig. 4 shows the extended temporal layer 

architecture dividing sensors into categories and grouping 

together to smaller blocks. Thanks to that, we do not have 

one complex table, but data are relocated into smaller 

portions to separate temporal tables, which are also 

modelled on the level of attributes.  

 

 

Fig. 4. Extended temporal layer architecture 

 Whereas actual states and object level states can be 

obtained only by the querying views, therefore, it is 

necessary to store them in temporal layer (second layer). 

In this case, we can extend that layer by management 

conventional (non-temporal) tables and even static tables, 

which values cannot be changed at all, like code lists 

(fig. 5).  
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Fig. 5. Extended temporal layer architecture covering 

conventional tables and code lists.  

 In extreme case, each attribute can be transferred to 

separate table grouping layer to form the finest granularity 

– updating is effective, however, such solution provide 

really poor performance for other operations (Select) and 

also size of the whole structure due to blocking factors. 

For the purpose of data modelling in multiple table 

locations (which can be even located in several servers), 

another internal layer has to be defined to provide 

particular data locality - to average workload of the nodes, 

group assignments can be relocated automatically over 

the time. Let the layer call pointer layer (fig. 6), which 

dispatches individual requirements to the particular group 

to be processed and to return defined and required results. 

Whereas assignments are managed automatically, several 

groups can be reported. This layer looks is defined 

between view layer (1) and column level temporal layer 

(2) and provides interface between them to detach 

external layer (which can be managed by the applications) 

and internal layer managing data using attribute oriented 

approach.  

 

Fig. 6. Pointer layer architecture  

 As it has been mentioned, adding sensors to the group 

during the defined time interval is provided by the pointer 

layer, which must also manage individual assignment 

changes and monitor impacts of workload on global 

performance. Data assignments are stored in access_table 

with the following structure (fig. 7): 

 ID – primary key of the table provided by the 

sequence and trigger,  

 BD – delimits the begin timepoint of the 

assignment to particular group node,  

 ED – stores information about the last point of 

the assignment to particular group node, can be 

NULL, which expresses actually unlimited 

assignment,  

 Group_id – identifier of the group (foreign key) 

in the column temporal layer,  

 Sensor_id – identifier of the sensor (foreign 

key). 

 

Fig. 7. Access_table  

 In the next part, it is necessary to evaluate the 

complex performance impact, when individual sensors are 

processed separately and model defined number of 

groups. Each category (group) is defined by a random 

assignment of the sensors with regards on the 

approximately the same workload for each group, thus it 

is necessary to minimize extremal values [13].  

 

3. POINTER LAYER AND SENSOR GROUPING 

 The aim of the pointer layer is to provide management 

of the associations between groups and sensors 

themselves. It is necessary to evaluate data management 

performance. In intelligent systems reflected by temporal 

databases, it is modelled using state and attribute changes 

and process of getting required data during the defined 

timepoint or time interval. Column level temporal 

architecture statement types can be divided into four 

types: 

 Insert statement, which expresses adding new 

sensor processing to the system.  

 Update statement – operation providing changes 

of the attribute value based on sensor data 

measuring, processing and evaluating.  

 Delete statement – operation for unregistering 

sensor processing caused by failure or removing 

sensor due to its unnecessity.  

 Purge statement – although processing is based 

on time and temporal data should be stored over 

the time, usually it is not necessary, nor 

appropriate to store all values during infinite 

time period (volatility). These data are too 

extensive, but mainly, they are no longer needed 

for processing and then, they do not produce any 

effect for decision making, evaluating and 

setting parameters. Therefore, Purge method is 
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used to remove such data from the temporal 

system. Of course, in this case, they are 

transferred and moved to the data warehouse, 

thus they remain available for the needs of 

archives. 

Thanks to that architecture, the most important data 

destructive operation is just Update statement, because 

Insert and Update statements can be executed during 

small server loads (e.g. at nights) and are usually executed 

rarely. On the other hand, if it is necessary to add new 

sensors immediately, it does not affect performance so 

significantly.  

For the purposes of this paper, we will therefore deal 

with Update and Select statements.  

 

4. PERFORMANCE EVALUATIONS 

Our experiments and evaluations were performed 

using defined sensorical network environment – 1000 

sensors were used delimited by 10 000 changes for each 

of them. Thus, total number of processed data is 

10 000 000, which is, as we can see in the experiments, 

totally suitable for evaluations.   

Experiment results were provided using Oracle 

Database 11g Enterprise Edition Release 11.2.0.1.0 - 

64bit Production; PL/SQL Release 11.2.0.1.0 – 

Production. Parameters of used computer are: processor: 

Intel Xeon E5620; 2,4GHz (8 cores), operation memory: 

16GB and HDD: 500GB. 

Experiment results comparison was obtained using 

autotracing highlighting time [14] [15].  

The first part of the experiments will deal with the 

number of the groups and column level temporal tables 

for sensor processing and its impact on the performance 

of selecting. We will manage and compare performance 

with regards and comparison with centralized architecture 

with only one node. For the evaluation, we will build 

solutions using 2, 3, 5, 10 and 100 grouping nodes. In 

case of retrieving too small data portion, performance is a 

bit worse (but only slight). The reason is based on pointer 

layer, which must evaluate and control access to 

individual grouping nodes. Whereas the time evolution 

can cause changes in the assignments, processing lasts 

some time, however, it reflects only tenths of seconds 

(approximately 0,1s – average value). On the other hand, 

another significant performance factor influencing 

processing is just splitted table management. Whereas 

such table contains significantly less data amount, such 

processing and obtaining desired data is really far faster. 

Thus, the impact of the pointer layer is minimized, even 

replaced by the improvement of subsequent data retrieval. 

To evaluate also characteristics of the pointer layer, one 

hundred assignments have been performed during each 

experiment to balance workload of each group. Principles 

of balancing based on statistics is shown in fig. 8.  In the 

first case, three sensors are associated to the first group. 

However, the workload of this group is rising. If the 

difference of the workload across the groups is higher 

than 10%, rebalancing is started automatically. The aim is 

to have approximately the same workload. As a 

consequence, the third sensor is migrated to the second 

group. Now, the workload of the groups are balanced. If 

there is later any significant change, rebalancing is started 

automatically, too. Thus, the associations are delimited by 

the time interval.  

 

Fig. 8. Rebalancing  

When dealing with centralized architecture, only one 

group is used and all input data are located there. As a 

consequence, there is significant data amount and 

workload management. Moreover, there have been also 

situations, when data were delayed and even lost, because 

input buffers were full for accepting more data requests. 

In the fig. 9, there is the diagram of the centralized data 

retrieval. We deal with various numbers of data in 

comparison with all of them stored in the table. As we can 

see, there is really significant processing time growth. 

When dealing with all the data, processing lasts more than 

320 seconds. Even when retrieving only 1% of the data, 

processing costs reflected in time is approximately 3,44s, 

which is really high for huge data requirement amount 

over the time.  

Therefore, we propose another layer managing all the 

splitted data table segments. Thanks to that, each segment 

contains smaller data amount and management, but 

mostly retrieval is easier reflected by particular indexes 

[xxx].  

 In this part, we have compared six grouping 

architectures, which are delimited by the number of 

grouping nodes. In the first phase, we have compared 

performance using 2, 3, 5, 10, 50 and 100 grouping nodes. 

The workload and data have been distributed randomly, 

but with emphasis on uniform distribution. As in the 

previous section, the assignment change number was 100. 

Fig. 10 shows the results in the table form. Thus, number 

of grouping nodes has huge performance impacts on 

processing time, although it must be extended by another 

pointer layer. Moreover, it has been performed on single 
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server, so there so no another impact based on simplifying 

workload to distribute requirements to nodes for distribute 

and parallel processing.  

 

Fig. 9. Centralized architecture performance  

 When selecting only small data portions (1%), there is 

no improvement or very slight. On the other hand, when 

dealing with more data portions, processing can be 

distributed and pre-processed by the grouping node. 

Thanks to that, when dealing with 100 nodes, there is 

even 99% performance improvement, so the processing 

time descended from the values 329,34s to 3,26s due to 

parallelism. Moreover, when dealing with only one 

server, it is not necessary to deal with node failures, 

communication network faults, etc.  

 

Fig. 10. Experiment results – processing time (s) based 

on number of grouping nodes.   

 Fig. 11 shows the time processing, when dealing with 

50 and 100 nodes. It is also reflected by the number of 

data to be processed and retrieved. It is compared with the 

centralized architecture, so only one node is used and 

pointer layer can be therefore completely omitted. 

 

Fig. 11. Experiment results – processing time (s) based 

on number of grouping nodes and centralized 

architecture.  

 Data retrieval is, however, only one part of the 

problem. Another important performance factor is just 

based on changes management operated by Update 

statements. Although it is perfect for data selecting, it is 

inevitable to optimize and manage also mentioned 

operation. For this purpose, we have evaluated Update 

statement performance for centralized architecture, but 

also for 10 and 100 grouping nodes. Fig. 12 shows the 

experiment results. Individual time performance 

characteristics are shown in fig. 13 (centralized 

architecture), fig. 14 (10 nodes), and fig. 15 (100 nodes). 

Each Update statement type has been performed 1000 

times and shown results express summed values.  

 Comparison of the column level temporal architecture 

in comparison with object level is described and 

experimented in [xxx] [xxx]. Update statement itself can 

be divided into two separate operations, which must be 

executed in temporal system. Whereas it is necessary to 

ensure correctness of the results reflected by the unique 

state during each timepoint, Select statement must provide 

control mechanisms. Then, update of the state is provided. 

Therefore, the main part is based on controlling 

mechanisms, which are provided by the Select statement 

and result checking and managing. Whereas we have 

1000 sensors, we will deal with various characteristics, in 

this phase, we deal with 1%, 2%, 5%, 10%, 20%, 50% 

and 100% of all sensors in one operation. As we can see, 

if groups are defined, significant improvement is always 

provided. For updating only 1% of all sensors, when 

dealing with 10 grouping nodes, performance is better and 

time processing is lowered by 48,22% for 10 nodes and 

even by 67,22% for 100 grouping nodes (in comparison 

with centralized architecture - reference 100%). 

Moreover, when all sensors are updated during the same 

time, comparing time processing between grouping nodes 

and centralized architecture (reference 100%) provides 

following results:  

 51, 25%   10 grouping nodes, 

 95, 36%  100 grouping nodes. 

 

Fig. 12. Experiment results – processing time (s) based 

on number of grouping nodes.   

 

Fig. 13. Experiment results – processing time (s) of the 

Update statements – centralized architecture. 
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Fig. 14. Experiment results – processing time (s) of the 

Update statements – 10 grouping nodes.  

 

Fig. 15. Experiment results – processing time (s) of the 

Update statements – 100 grouping nodes. 

5. CONCLUSION 

 Sensor data processing, managing and evaluating is 

one of the significant part of the database technology. 

They provide data over the time to reflect changes and 

evolutions. Such data are complex and should be stored in 

the database. Therefore, it is necessary to design and 

propose effective and robust solution to provide desired 

performance. Paradigm of the conventional database is 

not suitable at all, because it is based on managing only 

actual valid data. Temporal management defined in the 

past is based on object level granularity, thus, such 

solution does not provide sufficient power for sensor data 

processing, and therefore we have proposed column level 

temporal architecture, which consists of three layer levels. 

Whereas the workload and onslaught requirements for the 

column level temporal layer is enormous, it is necessary 

to extend processing and management. In our case, we 

have extended it by the pointer layer, which stores 

associations of the sensor to the particular group, which 

can evolve over the time based on statistics and 

workloads. Based on defined experiments, such solution 

provides significant improvement in the process of data 

retrieving, managing and changing.  

 In the future, we would like to extend that solution by 

the replications to the multiple servers with various 

number of grouping nodes.  

6. ACKNOWLEDGMENT 

 This publication is the result of the project 

implementation: 

 Centre of excellence for systems and services of 

intelligent transport, ITMS 26220120028 supported by 

the Research & Development Operational Programme 

funded by the ERDF and Centre of excellence for systems 

and services of intelligent transport II., ITMS 

26220120050 supported by the Research & Development 

Operational Programme funded by the ERDF. 

 
"PODPORUJEME VÝSKUMNÉ AKTIVITY NA SLOVENSKU 

PROJEKT JE SPOLUFINANCOVANÝ ZO ZDROJOV EÚ" 

7.REFERENCES 
[1] L. Ashdown. T. Kyte Oracle database concepts, 

Oracle Press, 2015.  

[2] C. J. Date. Date on Database, Apress, 2006.  

[3] S. Feueuerstein. Oracle PL/SQL Programming, 
O’Reilly, 2014. 

[4] J. Janáček. M. Kvet. Min-Max Optimization Of 
Emergency Service System By Exposing Constraints, 
in Communications: Scientific Letters of the 
University of Žilina, volume 2/2015, 2015, pp. 15 – 
22 

[5] J. Janáček. M. Kvet. Public service system design by 
radial formulation with dividing points, in Procedia 
computer science Vol. 51, 2015, pp. 2277 – 2286 

[6] T. Johnston. Bi-temporal data – Theory and Practice, 
Morgan Kaufmann, 2014. 

[7] T. Johnston. R. Weis. Managing Time in Relational 
Databases, Morgan Kaufmann, 2010.  

[8] M. Kvet. K. Matiaško. Temporal Context Manager. 
2015. SDOT Žilina, pp. 93-103. 

[9] M. Kvet. K. Matiaško, Transaction Management. 
2014. CISTI, Barcelona, pp.868-873. 

[10] M. Kvet. K. Matiaško, Uni-temporal Modelling 
Extension at Object vs. Attribute Level, 2013. IEEE 
conference EMS 2013,  

[11] M. Kvet. M. Vajsová. Transaction Management in 
Fully Temporal System, 2014. UkSim, Pisa, pp. 147-
152. 

[12] T. Kyte. D. Kurn. Expert Oracle Database 
Architecture, Apress, 2014.  

[13] K. Matiaško, et al. Database systems. EDIS, 2008.  

[14] H. Molina, et al. Database systems – The complete 
book”, Pearson, 2008.  

[15] R. Rood, et al. Oracle Advanced PL/SQL Developer 
Professional Guide, Packt Publishers, 2012.  

[16] P. Vilhan and J. Gajdoš, Tool for Rapid Acceleration 
of Network Simulation in OMNeT++”, 2012. In 
UkSIM 2012, Cambridge.  

[17] P. Vilhan. L. Hudec. Building public key 
infrastructure for MANET with help of B.A.T.M.A.N 
advanced, 2013. In EMS 2013, Manchester. 

 

 

 

68 




