
Neural Networks and Largest Lyapunov Exponent for Automatic 

Epileptic Seizure Detection in EEGs 

Vladimir Golovko 1), Svetlana Artsiomenka 2), Volha Kistsen 3), Victor Evstigneev 3) 

1) Department of Intelligent Information Technology, Brest State Technical University, 

Moskowskaya str. 267, 224017, Brest, Belarus, gva@bstu.by, http://iit.bstu.by/users/51/18/gva 

2) Department of Intelligent Information Technology, Brest State Technical University, 

Moskowskaya str. 267, 224017, Brest, Belarus, svetilka@gmail.com, 

http://iit.bstu.by/users/64/18/lsv 

3) Department of Neurology and Neurosurgery, BelarusianMedicalAcademy of Post-Graduate 

Education, Filatova str. 9 (5th City Hospital), Minsk, Belarus, kisten@tut.by, 

http://belmapo.by/department-of-neurology-and-neurosurgery.html 
 

Abstract: We report a novel method for epileptic seizure 

detection that is reliant on the maximal short-term 

Lyapunov exponent (STLmax).  The proposed approach is 

based on automatic segmentation of the EEG into epochs 

that correspond to epileptic and non-epileptic activity. 

The STLmax is then computed from both categories of 

EEG signal and used for classification of epileptic and 

non-epileptic EEG segments throughout the recording. 

Neural network techniques are proposed both for 

segmentation of EEG signals and computation of 

STLmax. The data set from hospital have been used for 

experiments performing. Furthermore, the publicly 

available data were used for experiments. The main 

advantages of presented neural technique is its ability to 

rapidly detect the small EEG time segments as epileptic 

or non-epileptic activity, training without desired data set 

about epileptic and non-epileptic activity in EEG signals. 

Keywords: Multilayer perceptron, chaos, largest 

Lyapunov exponent, electroencephalogram, epileptic 

seizure. 

1. INTRODUCTION  

The scalp EEG is the most widely-used diagnostic tool 

in epilepsy, a common neurological disorder that affects 

approximately 1% of the world’s population [1]. Seizure 

detection, as well as detection of epileptiform interictal 

activity, is an essential part of day-to-day management of 

patients with epilepsy.  Notably, although most EEG data 

are now digital, and numerous protocols for automated 

seizure detection are available [1-15], the EEG is still 

largely analyzed by visual inspection.  Here, we present a 

novel method for automated detection of seizure and 

epileptic interictal discharge based on the maximal short-

term Lyapunov exponent (STLmax), a measure of 

dynamic system instability which has been extensively 

used in EEG analysis [2,16] 

Previous studies show nonstationarity and chaotic 

nature of EEG data, and thus justify a measure of entropy 

such the STLmax [2, 7-9]. There exists clear difference in 

dynamical properties of the EEG signals in non-epileptic 

and epileptic state. Epileptic seizures are characterized by 

synchronized neuronal firing which reduces EEG 

complexity.  It is known that the STLmaxis reduced 

during epileptic activity, and for this reason the STLmax 

calculation has been proposed as a component of seizure 

detection protocols [2, 4, 7-9].  However, the 

conventional approaches for computing of the STLmax 

exponent are very sensitive to the volume of data and 

computationally intensive [17]. In order to estimate the 

STLmax for EEG data, a modified Wolf algorithm [16] 

are used in [2]. However, the existing approaches have 

the following drawbacks:  unreliable for small data-set 

size and computationally intensive. Therefore, the many 

authors use for computing of STLmax long EEG 

segments with time length of 10,24 s [18-20]. One 

limitation of previous study is that these don’t permit to 

detect exactly the small EEG segments with epileptic and 

non-epileptic activity. 

Seizure detection by machine learning protocols is 

often accomplished in two stages: (1) feature selection 

and (2) event classification [4, 10-15]  However, present 

approaches to feature selection have a disadvantage in 

their inability to select time segments with epileptic 

activity in EEG and the requirement for neural network 

training on desired data set, which necessitates some 

amount of non-automated EEG analysis in order to 

identify representative epileptic and non-epileptic EEG 

segments to be used as templates for the automated 

algorithm [1,3-6,10-15].  

The basic idea of this paper is to detect exactly the 

EEG segments of different duration with epileptic and 

non-epileptic activity. It permits to identify pathological 

activity in remission state and to detect paroxysmal 

activity in preictal period. We propose neural networks 

technique both for time segmentation of EEG signals and 

computation of the STLmax. As mentioned, the epileptic 

seizure is characterized an STLmax decrease, and we 

propose to exploit the change of the STLmax over time as 

a criterion of epileptic seizure in EEG segments. 

Neural networks techniques permit to reduce the 

diagnostic time and the number of misdiagnosis, as well 

as to assist the doctor in making decision. The clinical 

data from the 5th City Hospital (Minsk, Belarus) have 

been collected for testing of the proposed approach. 

Furthermore the publicly available data were used for 

experiments [21]. The efficiency of epileptic seizure 

detection is illustrated by the experimental results. 

The paper is organized as follows. The dataset used in 

this work and proposed methodology is given in Section 

2. In Section 3 the experimental results are described. 

Finally, discussions are given in the last section. 
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2. DATABASE  

In this research we have used two datasets for 

proposed approach testing. The first one described in [22] 

and publicly available from [21]. The second one have 

been taken from 5thCityHospital in Minsk (Belarus). 

Let’s consider these databases. 

The complete dataset [22] includes five subsets 

(denotes A,  B, C, D and E), each containing 100 single-

channels EEG signals of 23,6s duration with sample 

frequency of 173,6 Hz. Set A and B have been taken from 

surface EEG recordings of five healthy volunteers with 

eyes open (set A) and closed (set B), using international 

10-20 electrode placement scheme. Set C and D consist of 

inter-ictal recordings from five epileptic patients. 

Electrodes were placed on epileptic zone for set C and on 

the hippocampal formation of the opposite hemisphere of 

the brain for set D. Thus sets C and D contains activity of 

epileptic patients measured during seizure free intervals. 

Set E includes seizure activity, selected from all recording 

sites exhibiting ictal activity. 

The next database was collected from the 5th City 

Clinical Hospital (Minsk, Belarus) for 20 adult patients 

with epileptic activity. During long time was performed 

patient’s examination, using 16-channel registration of 

EEG. The EEG signals have been registered with the 

sampling rate of 250 samples per second. The duration of 

one registration was approximately 30 min. 50 

registrations were realized for each patient. As a result of 

processing these EEG data, the EEG database was 

created, which represents the set of 48 registrations of 16-

channel EEG, selected from eight adult epileptic patients 

during 8 seconds for each registration. It may be noted, 

that each signal in EEG was presented as time series of 

2000 points. Thus the EEG database contains 48x16=768 

EEG time series. The total number of epileptic events in 

these EEG signals is 102. The epileptic events were 

selected due the long time examination of patients. We 

should note that practically impossible to indicate the 

seizure event in these EEG signals even for high quality 

the neurologist experts. Our goal is to detect in EEG 

signals the segments with epileptic and non-epileptic 

activity. 

3. THE SYSTEM DESCRIPTION 

In this section the neural network diagnostic system 

for epileptic seizure detection using EEG data is 

described. As a diagnostic criterion the value of the 

STLmax is used, which is decreased during seizures. The 

STLmax characterizes sensitivity to initial conditions [16, 

17]. It is statistical measure of divergence between two 

orbits starting from slightly different initial conditions. 

The neural network diagnostic system is shown in Figure 

1. It consists of different units, which are combined in 

diagnostic system. One can see from Figure 1 the system 

inputs are multi-channel EEG patient data of patient. 

These data can be interpreted as an observation of chaotic 

dynamical system generating electrophysiological waves. 

EEG data recorded from scalp electrodes contain different 

artifacts and consist of various signals combination. 

Therefore, in the first stage (preprocessing) the 

independent component analysis (ICA) is used for 

artifacts removal and extraction of the independent 

sources from their mixtures [23]. ICA separates the 

independent sources from their mixtures by measuring 

non-Gaussian. As a result, we can get independent and 

clean EEG data without artifacts and noises. 
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 Fig. 1 – There is neural network system for epileptic 
activity detection. The set of EEG signals is used as 

input data for the system.  
In the second stage every EEG signal is divided into 

quasi-stationary segments, using adaptive segmentation 

algorithm. The segment is called quasi-stationary when its 

behavior does not change under a time shift. The 

multilayer neural network (MLP) is used for adaptive 

segmentation of EEG signal. The multilayer perceptron 

consist of 7 units input layer, 5 units hidden layer and 1 

output unit (Fig. 2). The minimal initial length of EEG 

segment is 70 points and is changed during adaptive 

segmentation. The computation of the STLmax for every 

extracted segment is performed on the third stage (level of 

chaos calculating). As a result, the sequence of the 

STLmax for every EEG signal is obtained: 
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where p – the number of selected segments. 

 

 
Fig. 2 – Predicting neural network includes three layers. Each 

layer consists of k, p and one neurons. 
 

As a result, the sequences of segments with different 

values of the STLmax are obtained. If the different 

segments have the same value of the STLmax they are 

combined into a one segment. 

Finally, the epileptic seizure identification is 

performed in accordance with the following test: 
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As a result, we obtain the segments in EEG signals 
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with epileptic and non-epileptic activity. 

The algorithm of the dividing initial EEG signal into 

elementary intervals by the neural network approach is as 

follows: 

1) EEG signal is divided preliminary into the short 

segments of the length of N points (N=70). The start point 

of the sliding window is t = 1. 

2) The training samples are formed: {x(t), x(t+1),… 

x(t+N-1)}. 

3) Multilayer perceptron is trained by means of sliding 

window approach.  

4) The perceptron begins to predict the points of 

segment. As a result the following points are obtained: 

{x’(t+N), x’(t+N+1), x’(t+N+2), …}. The data prediction 

is ended when expression (3) is fulfilled. 

max)()(' xixix 
 

(3) 

Where i = t+N, t+N+1,…, xmax=0,1 is a appropriate 

error of the forecasting. 

5) If i = t + N (expression (4) is fulfilled) then i is a 

point of the segment border and the next training data set 

are formed beginning from t= i. Otherwise the segment 

border moves on the number of the predicted points, i.e. t 

= i – N. 

6) The procedure is continued, when t < m – N, where 

m is common length of time series. 

After fulfillment of this algorithm we can get the set 

of different segments and multilayer perceptrons tuned on 

corresponding segments. It should be noted that we use 

for calculation of the STLmax the multilayer neural 

networks, received at the segmentation stage. As a result, 

the sequences of segments with different values of the 

STLmax are obtained. If the different segments have the 

same value of the STLmax exponent they are combined 

into a one segment. 

4. EXPERIMENTAL RESULTS  

In our research we used sets (A-E) of the EEG signals 

[21, 22]. There are 100 EEG segments in each set. Each 

EEG segment contains 4096 consecutive amplitude 

points; its duration is 23.6 seconds with sampling 173.61 

Hz.  We made experiments on the EEG signals that are 

characterized pathological (epileptic) and normal 

activities. Sets A and B consist signals recorded from 

healthy patients with eyes open (A) and eyes closed (B), 

respectively. Set C and set D includes EEG fragments 

during seizure-free intervals that were recorded from 

within the epileptogenic zone (C), and from the 

hippocampal formation of the opposite hemisphere of the 

brain (D). Set E contained activity during epileptic 

seizure. 

All sets were used in experiment. Signals were 

classified on two classes: first class consisted signals with 

epileptic activity detected with using our system, second 

class included signals with only non-epileptic activity.  

In the Table 1 the experimental results of 

classification are presented. 

Table 1. Classification results for sets A-E. Each set consists 

of 100 EEG signals. 

Set 
Class 1: 

epileptic activity 

Class 2: 

normal activity 

A 0  100  

B 0  100  

C 6  94  

D 32  68  

E 92  8  

It is significant, that there are no false detections of 

epileptic activity in sets A and B (see example in the 

Figure 4 a). In surgical treatment it is necessary to find 

the epileptic zone (the source of epileptic seizures). It is 

interesting, that 6 % epileptic activity detections in the set 

C were only single detections (only one segment with 

epileptic activity in each signal is detected). Example of 

the single detection presented in the Figure 4 b. When sets 

C and E were analyzed system had multiple detections in 

the signals in most cases (Figure 4 c). Figures 4 b and 4 c 

clearly show that the system can not only detect the 

presence of epileptic activity, but also to allocate the 

segments in which it is contained. 
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 Figure 4. Representative EEG signal fragments (sets A, C and 

E) analyzing. a) The fragment from set A hasn’t epileptic 

activity detection. b) The fragment from set C has one segment 
with epileptic activity (gray color). c) Four segments with 

epileptic activity (gray color) are detected in the fragment from 
set E. 

 
The next experiment is made with use EEG data given 

by the 5th City Clinical Hospital (Minsk, Belarus). The 

data represent set of 21 registrations of 16-channel EEG. 

EEG data was recorded from eight adult patients during 8 

seconds for each registration. In the result of EEG data 

digitalization with frequency 250 Hz each signal in EEG 

was presented as time series of 2000 points. Total number 

of EEG signals is 336. In comparison with previous 

database these data contain different artifacts. As it was 

mentioned early for removing artifacts from EEG records 

we use independent component analysis (ICA), which can 

detect independent source signals from linear mixtures. 

All records of one registration are divided into six sets. 

The number of sets is selected by experimentally way 

according to the number of signals in the set for the 

correct filter, and to location of the electrodes. 

Then each set of EEG signal is processed by ICA 

module. As a result, we have obtained six clean without 

artifacts EEG signals. After that the segmentation of each 

obtained EEG signals is performed. As a result, we 

detected 4364 segments from EEG signals of all 

registration (6x48=288). The results of classification all 
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selected segment in the EEG data by the designed system 

are summarized in the Table 2.  

Table 2. Epileptic activity classification using database from 

hospital for 8 patients. 

Real 

state 

Number of 

all segments 

Classification results 

Class 1: 

epileptic 

activity 

Class 2: 

normal 

activity 

Epileptic 

segments 
102 95 7 

Normal 

segments 
4262 12 4250 

We can see that our system correctly detects 95 

segments with epileptic activity from total number of 102 

segments. 

The test performance of the presented approach can be 

defined by the computation of sensitivity, specificity and 

total classification accuracy. The values of these statistical 

parameters calculated on the base of Tables 1 (sets A, B 

and E) and 2 are presented in Table 3. 

Table 3. Performance comparison on two dataset 

 Statistical 

parameters  

Values for  

sets A, B, E 

Values for 

clinical data 

Specificity 100,0 % 99,7 % 

Sensitivity 92,0 % 93,1 % 

Total classification 

accuracy 
96,0 % 99,6 % 

The results show that the presented in the paper 

methodology of EEG analysis are very specifically (99.7 

%), it means that there are small counts of false epileptic 

activity detection. It is important because a misdiagnosis 

can have serious consequences. The value of the 

sensitivity means that the system in 93.1 % cases has right 

epileptic activity detection in real EEG data. The total 

accuracy of the segments classification in two classes 

(non-epileptic  activity  and  epileptic  activity)  is  equal 

99.6 %. 

4. CONCLUSION 

In this paper the novel method for epileptic seizure 

detection using EEG waveforms have been addressed. 

The proposed approach is based on selection of the 

different time segments in EEG signals with epileptic and 

non-epileptic activity. The value of the STLmax is used 

for classification of epileptic and non-epileptic segments 

in EEG data. The neural network techniques are proposed 

both for segmentation of EEG signals and computation of 

STLmax. The proposed approach uses the same neural 

networks both for time segment selection and for STLmax 

computation in each segment using small data sets and 

faster in comparison conventional approach. This allows 

both for reducing the computationally complexity and for 

limit the observation time. 

The data set from hospital have been used for 

experiments performing. The main advantages of 

presented neural technique is the ability to select in EEG 

small time segments with epileptic and normal activity, 

training without desired data set about epileptic and non-

epileptic activity, the ability to assist the doctor in making 

decision and to visualize the zones (segments) of epileptic 

and non-epileptic activity in EEG signals using two-

dimensional map [24–26]. Thus the proposed method has: 

- high accuracy of segments classification for epileptic 

and non-epileptic activity; 

- automatic detection of epileptic activity in the EEG; 

- classification without prior training on the special 

desired data set; 

- the ability to detect seizure activity of different 

shapes and duration; 

- resistance to noise in the signals of the EEG. 

It permits to detect exactly the EEG segments of 

different duration with epileptic and non-epileptic 

activity, to identify pathological activity in remission state 

and to detect paroxysmal activity in preictal period. 
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