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1 Introduction

Biological cells are open, dynamic self-organizing microsystems that exchange matter,
energy and information with their environment. Performing their physiological func-
tions, the biological cells interact with other cells, vessel walls and macromolecular
complexes when as a rule they are subjected to mechanical stress.

The cell surface properties including its structural and mechanical properties are im-
portant parameters of cell state and functioning. Because the change of the cell surface
properties occurs during the pathological processes, the qualitative and quantitative
cell surface characteristics can be markers of cell health and pathology.

Atomic force microscopy (AFM) is one of the modern methods for studying solid
surface structure and properties. AFM has tremendous advantages over electron mi-
croscopy (including scanning electron microscopy), as it allows working with objects
directly both on air and in various fluids. Atomic force microscopes are widely used
in many fields of science and technology: biophysics, biochemistry, materials science,
pharmaceutics, surface physics, electronics and others. Nowadays AFM is used in
studying the biological cells and tissues as well.

AFM provides the images of topography (topography scan mode) and spatial distri-
bution of local physical and mechanical properties (torsion scan mode) of the studied
surface with nanometer resolution (Figure 1).

AFM-image of a cell surface is a set of points with three coordinates (x, y, z) that
represents either a topography map (in this case x, y and z are positions of the surface
points) or map of local physical and mechanical properties (in this case x, y are positions
of the surface points and z is a force value in the certain point).

The dimension is an important parameter of the surface of objects. Real surfaces are
characterized by fractal (fractional) dimension. There are various methods to calculate
the fractal dimension: box-counting method, power spectrum method, hand and drives
method and others [1]. Each method has its own features that limit its usage.

The work aims at studying the relationship between the fractal dimension and
geometrical parameters of AFM images of real biological cells and model surfaces.
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Figure 1: AFM images (a, b) and profiles (c, d) of 549 cancer cell surface (scan size is
2.5µm× 2.5µm).

2 Methods

The main method we used to calculate the fractal dimension is box-counting method
[2,3]. It based on the following formula:

DF = − lim
ε→0

logεN(ε), (1)

where N(ε) is minimal number of cubes with edge ε that cover together the required
surface.

To find the fractal dimension (DF ) the system of equations had to be solved:

lnN(ε) = lnC +DF ln ε, (2)

where the number of equations is larger than the number of unknown variables. The
system often has no exact solution and, therefore, is solved numerically.

In the present work, the mentioned above method was realized on C++ program-
ming language using Borland C++ Builder IDE and STL library.

The implementation of the algorithm included the following steps. The spatial
region with the studied surface was divided by the cubic lattice with cube edge ε
(initially set as a half of the studied region size). Then the number of cubes N(ε) that
included at least one point of the surface was calculated. The cube edge ε was reduced
by two and the process repeated in loop until cube edge became less than a constant
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depending on AFM scanning step. At each step of loop pairs lnN(ε) and ln ε were
added to resultant array. The plot lnN(ε) against ln ε was approximated with a line
which slope was equal to surface fractal dimension DF .

We used also the modified box-counting algorithm. The surface was divided into a
few (from 2 to 8) equal fragments and the fractal dimensions were calculated for each
fragment using box-counting algorithm. Then the fractal dimension for the whole sur-
face was calculated using the sample of DF and represented as the mean and confidence
interval limits.

3 Results

We analyzed the change of fractal dimension with the change of the scale factor for
axis Z (Z-scaling). The problem of the change of the object dimension during scaling
has been recently reviewed by Simon Villerton in two-dimensional case [4]. In the
present work, the analysis of the dependence of the fractal dimension on Z-scaling was
performed in the following way: the data along axes X and Y were not changed but
the data of axis Z was multiplied by factor t changed over a broad range of values. DF

of the whole surface was calculated for each value of factor t (scaling factor for axis Z):

DF = φ(t). (3)

Various modeling surfaces have been generated for the qualitative analysis of the
dependencies: plane surface, plane surface with a finite number of Gaussian peaks,
wave surfaces Z = H sin(ω

√
x2 + y2) and Z = H| sin(ω

√
x2 + y2)|. The changes in

DF = φ(t) with the changes of frequency, amplitude and other surface parameters were
found and analyzed.

Figure 2: Dependence DF = φ(t) for torsion and topography scans of erythrocyte
surface.
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For the erythrocyte surface (Figure 2)DF at the smaller values of t tends to 2 (plane
surface) and at the larger values of t tends to 1 (line). In the intermediate range of t,
function DF = φ(t) has some maxima. The results of the performed analysis has shown
that the parameters of dependence DF = φ(t) was qualitatively related to the type of
elements of the surface. For example, if the first peak in curve DF = φ(t) was higher
than the second peak, the studied surface had the frequent small-scale heterogeneities,
and if the second peak was higher than the first peak, the surface was relatively smooth
with a few large-scale heterogeneities.

4 Conclusion

Dependence DF = φ(t) is a characteristic of AFM images of surfaces (including the
surfaces of biological cells), which describes the surface features better than a single
value DF .
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