CALCULATION OF EUROPEAN OPTIONS WITH ABSOLUTE CRITERIA

N. M. Zuev
Belarusian State University
Minsk, BELARUS
e-mail: ZuevNM@bsu.by

Abstract

The problem of European options calculation is considered. The recurrent equations for the major characteristics are obtained.

Keywords: European option, absolute criteria, starting capital

1 Introduction

The problem of European options calculation is an important problem not only from the practical point, but also for the theory. In this paper we consider a (B, S)-market [1] and construct a sequence of recurrent equations for calculation of major characteristics of European type options for a self-financing portfolio.

2 Main Result

Let S_{n} be the cost of a risky active unit at the time moment n. Suppose it follows the model:

$$
S_{n}=S_{0}\left(1+\rho_{1}\right) \ldots\left(1+\rho_{n}\right),
$$

where $\rho_{k}, k=1, \ldots, n$, are the interest rates with stochastic changes. Let B_{n} be the cost of a non-risky active unit at the time moment n that depends on the random variables $\rho_{1}, \ldots, \rho_{n-1}$ only. Denote by $\pi_{n}=\left(\beta_{n}, \gamma_{n}\right)$ the portfolio at the time moment n, where β_{n} is the number of non-risky active units at the time moment n, γ_{n} is the number of risky active units at the time moment $n, n=1, \ldots, N ; N$ is the terminal moment, at this moment the option is executed. Denote by f_{N} the payment function that depends on random variables $\rho_{1}, \ldots, \rho_{N}$ only. In case of a standard purchase of the European option, $f_{N}=\left(S_{N}-K\right)^{+}$are the losses of the option seller for a risky active unit. Let K be the contract price for the purchase of a risky active unit at the time moment N. The variables β_{n}, γ_{n} are under prediction, and are supposed to depend on $\rho_{1}, \ldots, \rho_{n-1}$ only. Let $X_{n}=\beta_{n} B_{n}+\gamma_{n} S_{n}$ be the portfolio cost at the time moment n.

The problem of calculation of a European option is concentrated on the choice of the starting capital $X_{0}>0$ (the option cost) and the portfolio $\pi_{n}=\left(\beta_{n}, \gamma_{n}\right), n=1, \ldots, N$, so that $X_{N}-f_{N}=0$ would be minimal.

In [2] - [4] the formulae to calculate the options with quadratic criteria are obtained.
In this paper we give the formula for calculation of options while minimizing $E\left\{\left|X_{N}-f_{N}\right|\right\}$, the minimum is 0 .

Let us denote: $\tilde{X}_{n}=X_{n} / B_{n}, \tilde{S}_{n}=S_{n} / B_{n}, \tilde{f}_{n}=f_{n} / B_{n}$.

Theorem 1. For the self-financing portfolio $\pi_{n}=\left(\beta_{n}, \gamma_{n}\right), n=1, \ldots, N$, the values $X_{0}, \beta_{n}, \gamma_{n}$ are calculated recursively from the following equations:

$$
\begin{equation*}
E\left\{\left|\tilde{f}_{n-1}+\gamma_{n} \Delta\left(\tilde{S}_{n}\right)-\tilde{f}_{n}\right| / \bar{\rho}_{n-1}\right\}=\min \tag{1}
\end{equation*}
$$

for $n \leq N$;

$$
\begin{gather*}
\beta_{n}=\beta_{n-1}-\tilde{S}_{n-1}\left(\gamma_{n}-\gamma_{n-1}\right), \quad \tilde{X}_{0}=\tilde{f}_{0} \tag{2}\\
\tilde{f}_{n-1}=E\left\{\tilde{f}_{n} \mid \bar{\rho}_{n-1}\right\}-\gamma_{n} E\left\{\Delta\left(\tilde{S}_{n}\right) \mid \bar{\rho}_{n-1}\right\}, n=1, \ldots, N
\end{gather*}
$$

In (1) the expectation is taken conditionally w.r.t. $\bar{\rho}_{n-1}=\left(\rho_{1}, \ldots, \rho_{n-1}\right)$.
Proof. In case of a self-financing portfolio the value of X_{n} follows the law: $X_{n}=$ $\beta_{n} B_{n}+\gamma_{n} S_{n}=\beta_{n+1} B_{n}+\gamma_{n+1} S_{n}$. From it we get $\frac{X_{n+1}}{B_{n+1}}-\frac{X_{n}}{B_{n}}=\gamma_{n+1}\left(\frac{S_{n+1}}{B_{n+1}}-\frac{S_{n}}{B_{n}}\right)$, or

$$
\Delta\left(\frac{X_{n}}{B_{n}}\right)=\gamma_{n} \Delta\left(\frac{S_{n}}{B_{n}}\right) .
$$

From here we obtain:

$$
\begin{equation*}
\frac{X_{N}}{B_{N}}=\frac{X_{0}}{B_{0}}+\sum_{n=1}^{N} \gamma_{n} \Delta\left(\frac{S_{n}}{B_{n}} .\right) \tag{3}
\end{equation*}
$$

From (3) we get $\tilde{X}_{N}-\tilde{f}_{N}=\tilde{X}_{0}-\tilde{f}_{0}+\sum_{n=1}^{N}\left(\tilde{f}_{n-1}+\gamma_{n} \Delta\left(\tilde{S}_{n}\right)-\tilde{f}_{n}\right)$, where the functions $\tilde{f}_{n}, n=1, \ldots, N-1$ that depend on $\bar{\rho}_{n}$, are chosen below.

Choose the values \tilde{f}_{n-1} and γ_{n} from relations (1). From (1), (2) we find $\tilde{f}_{n}, \gamma_{n}, \beta_{n}$ for $n \leq N$. The value of \tilde{X}_{0} is set to \tilde{f}_{0}. The values β_{n} are found from (2) and the portfolio cost at the time moment n.

In case where the random variables ρ_{n} take only two values for all n, equation (1) for arbitrary probabilities of these values turn into two linear equations $\tilde{f}_{n-1}+\gamma_{n} \Delta\left(\tilde{S}_{n}\right)-$ $\tilde{f}_{n}=0$ with \tilde{f}_{n-1} and γ_{n} unknown.

References

[1] Shiryaev A.N. (1998). Financial Mathematics. Vol. 2. Moscow.
[2] Zuev N.M. (2013). Calculation of European type options. Procceedings of the 10th International Conference on Computer Data Analysis and Modeling. Minsk: BSU. Vol. 2, pp. 188-189.
[3] Zuev N.M. (2014). Calculation of European and American type options. Procceedings of the International Conference on Probability Theory, Random Processes, Mathematical Statistics and Applications. Minsk: RIHS, pp. 64-66.
[4] Zuev N.M. (2015). On calculation of European and American type options. Procceedings of the International Conference on Probability Theory, Random Processes, Mathematical Statistics and their Applications. Minsk: RIHS, pp. 47-49.

