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Abstract

Multivariate econometric models with heterogeneous structure arise in eco-
nomic and financial processes influenced by exogenous shocks. If structural het-
erogeneity is driven by presence of several classes of states in modeled complex
systems, multivariate regime-switching econometric models is a choice. An as-
sumption of normally distributed errors, which is traditionally held for such mod-
els, is often violated on real data. Therefore it is actual to develop multivariate
regime-switching econometric models in presence of non-gaussian errors. In this
paper, a multivariate regression model with switching regimes and asymmetri-
cally distributed errors is proposed. A maximum likelihood approach is used to
estimate the parameters of the model.

1 The model

Let us introduce an independent-switching multivariate linear regression model with
errors distributed according to a class SNI [1] of asymmetric distributions, hereafter
the IS-MLR-SNI model. The relation between endogenous and exogenous variables in
the IS-MLR-SNI is expressed as follows:

xt = Bd(t)zt + ηd(t),t, t = 1, . . . , T, (1)

where for a period of time t: xt = (xt1, ..., xtN)
′ ∈ X, X ⊂ ℜN (N ≥ 1) — vector

of endogenous variables, zt = (zt1, ..., ztM)′ ∈ Z, Z ⊂ ℜM (M ≥ 1) — vector of
exogenous variables, d(t) ∈ S(L) = {1, ..., L} — a state of a system modeled, Bd(t) —
regression coefficients matrix with a dimension N×M , ηd(t),t ∈ ℜN — a random vector
of heterogeneous errors.

For the model (1) the following assumptions are used.
1. Assumptions about observation errors:
a) observation errors have zero means and are mutually uncorrelated:

E{ηd(t),t} = 0N , E{ηd(t),t(ηd(τ),τ )′} = 0M×N , t ̸= τ, (t, τ = 1, . . . , T ); (2)

b) observation errors have asymmetric distribution from a class SNI:

ηd(t),t ∼ SNIN(b∆d(t),Σd(t), λd(t), ν), t = 1, . . . , T, (3)

where SNIN(µ,Σ, λ, ν) — a class of multivariate asymmetric distributions [1] including
skewed normal distribution and skewed t-distribution. The distributions from the
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SNI class have the following parameters: µ ∈ ℜN – location parameter; Σ – scale
parameter, a covariance matrix with a dimension of N × N ; λ ∈ ℜN – skewness
parameter; H(u| ν) – mixing distribution with a parameter ν ∈ ℜmν (mν ≥ 1); Σd(t)

λd(t) – covariance matrix and skewness parameter for a state d(t) ∈ S(L); b∆d(t) –

parameter ensuring the condition E{ηd(t),t} = 0N , b = −K1

√
2/π , K1 = E{U−1/2|ν} –

expectation of U−1/2 , where the random variable U is distributed according to H(u|ν),
∆l = Σ

1/2
l δl, δl = λl/

√
1 + λ′lλl , l ∈ S(L).

2. Assumptions about the regime-switching model: the sequence of states following
discrete time and space process with the distribution

P {dt = l} = πl > 0 (l ∈ S(L)) ,
∑L

l=1
πl = 1, (4)

where parameters {πl} (l ∈ S(L)) correspond to prior probabilities of states.
3. Condition of structural parametric heterogeneity:

Bk ̸= Bl, k ̸= l, k, l ∈ S(L). (5)

4. Assumption about exogenous variables.
A vector of exogenous variables zt is fixed for all realizations {zt}, t = 1, . . . , T .
With assumption (3), the model IS-MLR-SNI may be represented in the form of

the mixture of distributions with the following density function:

p(xt|Θ; zt) =
∑L

l=1
πlsniN (xt|Blzt + b∆l,Σl, λl, ν), t = 1, . . . , T, (6)

where sniN (xt|Blzt + b∆l,Σl, λl, ν) — distribution density function for a random vec-
tor xt ∈ ℜN against parameters Θ and fixed vector zt ∈ ℜM .

For model (1) in assumptions (2)–(5), let Θ = (π1, . . . , πL−1, θ
′
1, . . . , θ

′
L)

′ ∈ ℜm

be the stacked vector of all independent parameters, where θl = (b′l, S
′
l, λ

′
l)
′ ∈ ℜK ,

bl = vec(Bl) denotes the vector of all elements of matrix Bl, Sl denotes the vector with
the elements of upper triangular matrix of Σl, ν ∈ ℜmν . Then the overall number of
parameters equals m = L− 1 + LK +mν , where K = NM +N(N + 1)/2 +N .

2 Parameter estimation

To estimate the parameters of the model, we use an approach based on maximizing
the likelihood function for the parameters Θ given a sample of regression observa-
tions {xt, zt}, t = 1, . . . , T . For derivation of the parameter estimates introduce the
parameterization:

∆l = Σ
1/2
l δl, Γl = Σ

1/2
l (IN − δlδ

′
l)Σ

1/2
l = Σl −∆l∆

′
l, l ∈ S(L) (7)

where δl = λl/
√
1 + λ′lλl , λl ∈ ℜN – skewness parameter for class l.

Let X = (x′1, . . . , x
′
T )

′ ∈ ℜTN – stacked vector of all endogenous variables’ real-
izations from the sample, Z = (z′1, . . . , z

′
T )

′ ∈ ℜTM – stacked vector of all exogenous
variables’ realizations; v = (v1, . . . , vT )

′, u = (u1, . . . , uT )
′ – vectors of all realizations of
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random variables Vt, Ut accordingly, where random variable Vt has the truncated uni-
variate normal distribution with mean b and variance u−1

t on the interval (0,∞) and
depends on realization ut of random variable Ut distributed according to the mixing
distribution H(u|ν), and αt = (αt1, . . . , αtL)

′ denotes the state indicator that has the
multinomial distribution M(1; π1, . . . , πL).

Define the following expectations:

ρtl = EΘ {αtl|xt, zt} , βtl = EΘ {αtlUt| xt, zt} ,
ξtl = EΘ {αtlUtVt| xt, zt} , ωtl = EΘ

{
αtlUtV

2
t | xt, zt

}
, t = 1, . . . , T, l ∈ S(L),

(8)

where αti, Vt, Ut – random variables, and the expectations (8) derived against fixed
vector of parameters Θ and regression observations xt, zt with the following formula [1]:

ρtl =
πlsniN (xt|Blzt + b∆l,Σl, λl, ν)∑L

j=1 πjsniN (xt|Bjzt + b∆j,Σj, λj, ν)
, t = 1, . . . , T, l ∈ S(L),

βtl = ρtlβ(xt, zt, θl), ξtl = ρtlξ(xt, zt, θl),

ωtl = ρtlω(xt, zt, θl), t = 1, . . . , T, l ∈ S(L),

(9)

where β(·), ξ(·), ω(·) are defined for basic distributions from SNI class as in [1].

Theorem 1. Let ρ̃tl, β̃tl, ξ̃tl, ω̃tl be conditional expectations (8) derived against fixed
vector of parameters Θ̃ and regression observations sample {xt, zt}, t = 1, . . . , T . Then
the maximum likelihood estimates of the parameters {πl, Bl,∆l,Γl}, l ∈ S(L) have the
following representation:

π̂l = 1/T
∑T

t
ρ̃tl, (10)

B̂l =
∑T

t=1

(
β̃tlxtz

′
t − ξ̃tl∆̃lz

′
t

)
/
(∑T

t=1
β̃tlztz

′
t

)−1

, (11)

∆̂l =
[∑T

t=1
ξ̃tl

(
xt − B̂lzt

)]
/
∑T

t=1
ω̃tl, (12)

Γ̂l =
(∑T

t=1
ρ̃tl

)−1∑T

t=1

{
β̃tl

(
xt − B̂lzt

)(
xt − B̂lzt

)′
+ ω̃tl∆̂l

(
∆̂l

)′
−

− ξ̃tl

[(
xt − B̂lzt

)(
∆̂l

)′
+ ∆̂l

(
xt − B̂lzt

)′]}
, l ∈ S(L).

(13)

To prove the theorem we follow the corresponding results from [1] considering den-
sity (6) from model (1) based on assumptions (2)–(5).

To recover the initial parameters λl, Σl the following formulae are used:

λl = (Γl +∆l∆
′
l)
−1/2

∆l/
[
1−∆′

l(Γl +∆l∆
′
l)
−1
∆l

]1/2
,

Σl = Γl +∆l∆
′
l, l ∈ S(L).

(14)
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3 Objectives of the study

Regime-switching models are widely used in such applications as macroeconomics (real
business cycles modeling), microeconomics (company credit risk modeling), financial
markets (modeling and analysis of cyclical changes on financial markets) [2]. The prob-
lem of cyclical changes analysis with a help of the models mentioned may be consid-
ered in a context of more general problem of structural breaks analysis [3]. Structural
breaks may be partial or full, that is parameters {Bl, Σl, λl, πl}, l ∈ S(L) of the
IS-MLR-SNI model may partially or fully distinguish across the states. The changes
in the parameters may take place in any period of time t = 1, . . . , T . A vector of states
d = (d1, . . . , dT )

′ is unobserved.
To estimate structural breaks, a classification based approach is proposed. There-

fore for the IS-MLR-SNI model (1) on the assumptions (2)–(5) we have the following
problems to solve: 1) estimation of the parameters Θ of the model and the vector of
states d = (d1, . . . , dT )

′ on unclassified sample of regression observations {xt, zt}, t =
1, . . . , T ; 2) classification of new observations {xτ , zτ}, τ = T+1, . . . , T+h (h ≥ 1) with
the model estimated on the train data sample of size T . Problems 1 and 2 are solved
with cluster and discriminant analysis algorithms respectively. For cluster analysis we
use Expectation-Maximization (EM) algorithm. Earlier these problems were solved
for multivariate regression models with switching regimes and normally distributed
errors [4]. In [5] algorithms for analysis of multivariate regression observations with
markov-switching regimes were presented.

In this study, for the solution of the problems an EM-type algorithm has been
developed for the model (1) on the assumptions (2)–(5). An experimental study of the
proposed algorithm is conducted on the simulated data.
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