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Abstract

This work relates to the problem of linear approximation of multidimensional
statistical data. Instead of the approach of regression analysis, we want to use
another approach which is to minimize of the sum of the squares of the per-
pendicular distances from the system of points to the approximating plane. We
receive the formula of minimum distance from point to linear variety in Euclidean
space of the two-dimensional matrices as a first step in solving the problem.

1 Introduction

The approximation of statistical data by linear regression function minimizes the sum
of the squares of deviations between observations of endogenous variables and vari-
ables predicted by regression function [1, 3, 7]. The another approach is to minimize
of the sum of the squares of the perpendicular distances from the system of points
to the approximating plane. This approach was considered in works [2, 5], however
hasn’t got the wide illumination in statistical literature. We want to apply this ap-
proach to matrix statistical data. We solve the first part of this problem. We give
the formula of minimum distance from point to linear variety in Euclidean space of
the two-dimensional matrices. Unlike the works [2, 5] we receive a new independent
multidimensional-matrix solution of the problem.

2 Linear varieties in matrix arithmetical space

Let us denote R[n1n2] the linear space of (n1 × n2) -matrices with real elements and
operations of addition and multiplication on the real numbers and let us call it arith-
metical matrix linear space. Any element X ∈ R[n1n2] let us call a vector or point
in R[n1n2]. The system of vectors {X1, X2, ..., Xm} we will call linear dependent if
there are the real numbers α1, α2, ..., αm such that at least one of them not equal
zero and α1X1 + α2X2 + ... + αmXm = 0. If this equation is possible only when
α1 = 0, α2 = 0, ..., αm = 0, then system of vectors is called linear independent.

We define also the linear varieties in parametric form in R[n1n2]:

X = C0 + t1C1 + t2C2 + ...+ tn1n2−r1r2Cn1n2−r1r2 , (1)

where C0 = (ci1,i2,0) , C1 = (ci1,i2,1) , C2 = (ci1,i2,2) , , Cn1n2−r1r2 = (ci1,i2,n1n2−r1r2) , i1 =
1, n1 , i2 = 1, n2 , – linear independent (n1×n2) -matrices in R[n1n2], t1, t2, ..., tn1n2−r1r2
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– scalar real parameters. By analogy with vector space Rm we will call the variety
(1) (n1n2 − r1r2)-dimensional plane in R[n1n2], and matrices C1 , C2 , , Cn1n2−r1r2 –
direction matrices of this plane [6].

Relationship between r1 and r2 can by any in the framework of inequality 1 ≤
r1r2 ≤ n1n2, but more easy to interpretation is case when r1 = n1, 1 ≤ r2 ≤ n2.

For the case r1 = n1, 1 ≤ r2 ≤ n2 we receive a new form of linear variety (1). We
rewrite (1) in form

X = C0 +
0,2 (CT ), (2)

where

C = (ci1,i2,i′1,i′2) = ((ci1,i2)i′1,i′2) = (C̃i′1,i
′
2
), i1, i

′
1 = 1, n1, i2, i

′
2 = 1, n2 − r2, (3)

is four-dimensional matrix with sections C1 = C̃1,1 , C2 = C̃1,2, , Cn1n2−r1r2 =
C̃n1,(n2−r2), and T = (ti′1,i′2), i

′
1 = 1, n1, i

′
2 = 1, n2 − r2, – (n1 × (n2 − r2))-matrix, that

contains the parameters t1, t2, , tn1n2−n1r2 as its elements, 0,2(CT ) is (0, 2)-convolute
product of matrices C and T [4]. We present the matrices X , C0 in (2) in form of the
block matrices: X = [Xn2−r2 , Xr2 ] , C0 = [Cn2−r2,0, Cr2,0], where

Xn2−r2 = (xi1,i2), Cn2−r2,0 = (ci1,i2,0), i1 = 1, n1, i2 = 1, n2 − r2,

Xr2 = (xi1,i2), Cr2,0 = (ci1,i2,0), i1 = 1, n1, i2 = n2 − r2 + 1, n2.

The block Xn2−r2 is matrix, that contains the first n2 − r2 columns of matrix X, and
block Xr2 is matrix, that contains the last Xr2 columns of X. We present also the
matrix C in form of the block matrix C = {Cn2−r2 , Cr2}, and its blocks we define as
follows:

Cn2−r2 = (ci1,i2,i′1,i′2), i1, i
′
1 = 1, n1, i2, i

′
2 = 1, n2 − r2,

Cr2 = (ci1,i2,i′1,i′2), i1, i
′
1 = 1, n1, i2, i

′
2 = n2 − r2 + 1, n2.

Now we can write two equations instead of equation (2):{ Xn2−r2 = Cn2−r2,0 +
0,2 (Cn2−r2T ),

Xr2 = Cr2,0 +
0,2 (Cr2T ).

(4)

Because the matrices C1 , C2, , Cn1n2−r1r2 are linear independent, the matrix Cn2−r2 is
not singular, and we can get the matrix T from first equation of system (4):

T =0,2 (C
−1

n2−r2
(Xn2−r2 − Cn2−r2,0)),

where C
−1

n2−r2
is the (0, 2)-inverse matrix to the matrix Cn2−r2 . Substitution this solu-

tion to the second equation of system (4) gives

Xr2 = Cr2,0 +
0,2 (Cr2

0,2(C
−1

n2−r2
(Xn2−r2 − Cn2−r2,0))). (5)

The last expression shows that in the case of (n1n2−n1r2)-dimensional plane in R[n1n2]

the block Xr2 of the matrix X is linear expressed via its block Xn2−r2 . The expression
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(5) gives this dependence in explicit form for the second block Xr2 of matrix X. By
analogy with a vector space Rm we can call the variety (1) when n1n2 − n1r2 = 0
(r2 = n2 ) as point in R[n1n2]. When n1n2 − n1r2 = n1 (r2 = n2 − 1 ) the linear variety
(1) means that n2− 1 sections of matrix X (last its columns) linear depends on one its
section (first column). When n1n2 − n1r2 = n1(n2 − 1) (r2 = 1) the linear variety (1)
means that one its column (last column) linear depends on all previous its columns.

3 Distance from point to linear variety in Euclidean

space of the two-dimensional matrices

We denote E[n1n2] Euclidean space of the two-dimensional (n1 × n2)-matrices with the
scalar product

(X,Y ) =

n1∑
i1=1

n2∑
i2=1

xi1,i2yi1,i2 =
0,2 (XY ), X, Y ∈ E[n1n2]. (6)

We call orthogonal a vectors X and Y from E[n1n2], if (X, Y ) =0,2 (XY ) = 0, and we
call normalized a vector X ∈ E[n1n2], if (X,X) =0,2 (XX) = 1. We call orthonormal
the system of vectors X1, X2, ..., Xm ∈ E[n1n2], if this vectors are pairwise orthogonal
and each of them has single length, i.e. if

(Xi, Xj) =
0,2 (XiXj) = δi,j,

δi,j – the Kronecker symbol.
Let ξ = (ξi1,i2), i1 = 1, n1, i2 = 1, n2, – matrix from E[n1n2]. We formulate the

task of finding the minimum distance from point ξ ∈ E[n1n2] to linear variety (1). In
accordance with the scalar product (6) the square of distance is determined by formula

ρ2(ξ,X) =

n1∑
i1=1

n2∑
i2=1

(ξi1,i2 − xi1,i2)
2 =0,2 (ξ −X)2.

If we use in this formula the expression (2) for X, then we receive the optimization
task:

ρ2(ξ,X) =0,2 (ξ −X)2 =0,2 (ξ − C0 −0,2 (CT ))2 → min
T
. (7)

Now we go to the solving the task (7). We note, that we can write the variety (1)
in form

X = C0 +
0,2 (TCT1),

where CT1 is transposed matrix C in accordance with substitution T1 =

(
i, j, k, l
k, l, i, j

)
[4].

Then the task (7) get form

ρ2(ξ,X) =0,2 (ξ −X)2 =0,2 ((
o

ξ −0,2(TCT1))(
o

ξ −0,2(CT ))) → min
T
, (8)
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where
o

ξ= ξ − C0. Because in (8)

ρ2(ξ,X) =0,2 (
o

ξ
o

ξ)− 20,2(0,2(
o

ξ C)T ) +0,2 (T 0,2(0,2(CT1C)T )), (9)

then necessary conditions for a minimum are next equation

d

dT
ρ2(ξ,X) = −20,2(

o

ξ C) + 20,2(0,2(CT1C)T ) = 0.

From this equation we get

T =0,2 (0,2(CT1C)−1 0,2(
o

ξ C)),

where 0,2(CT1C)−1 is matrix (0, 2)-inverse to the matrix 0,2(CT1C). If we substitute
this solution to the expression (9), then we get the square of minimum distance:

ρ2min(ξ,X) =0,2 (
o

ξ
o

ξ)−0,2 (
o
η 0,2(

o
η 0,2(CT1C)−1)), (10)

where
o
η=0,2 (CT1

o

ξ).

We have proved the following theorem.

Theorem 1. Let E[n1n2] is Euclidean space of the two-dimensional (n1 × n2)-matrices
with the scalar product (6) and ξ is point in E[n1n2]. The square of distance from point
ξ to the linear variety (2) in E[n1n2] is defined by expression (10).
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