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Abstract

Presents the probability density and their properties for some stochastic mod-
els of short-term interest rates of yield, the authors previously proposed construc-
tively without probabilistic analysis of their properties.

1 Introduction

There are many different models of short-term interest rates of the class of diffusion
processes. Most of them are well documented by the authors, which offered them, or
those who use them for their studies. However, there is a set of models tend to be fairly
complex, probabilistic description of the properties which are absent in the literature.
It is they who are the subject of our consideration. The main problem that we are
interested is getting analytical expressions for the stationary probability densities and
its main moments. Some models, such as models Vasiek (1977), Cox - Ingersoll - Ross
(CIR) (1985), Duffie - Kan (1996), Ahn - Gao (1999), are well documented in the
literature, therefore are not described here and not mentioned in the list of references.
All considered models belong to the class of diffusion models, that generate processes
X(t), described by the equation

dX(t) = µ(X(t))dt+ σ(X(t))dW (t), t > t0, X(t0) = X0,

where a specific determination of drift µ(x) and volatility σ(x) defines one or another
particular model.

2 The Ait-Sahalia model [1]

Ait-Sahalia has tested the based models of short interest rates (including described
here) by fitting them to the actually time series of rates. It was found that an acceptable
level of goodness-of-fit all these rates were rejected because the drift and volatility
properties. As a result he proposed the following functions drift and diffusion

µ(r) = α0 + α1r + α2r
2 + α−1

1

r
, σ2(r) = β0 + β1r + β2r

2.

In this model, the non-linear functions of drift and diffusion allow a wide variety of
forms. To σ2(r) > 0 for any r, it is necessary that the diffusion function parameters
ensure the fulfilment of inequalities

β0 > 0, β2 > 0, γ2 ≡ 4β0β2 − β2
1 ≥ 0.
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Relevant in this function a probability density is given by expression

f(x) = NxB(β0 + β1x+ β2x
2)C−1eAx+Garctg(E+Fx), x > 0,

where N is normalization constant,

A =
2α2

β2
< 0, B =

2α−1

β0
> 0, C =

α1

β2
− α2β1

β2
2

− α−1

β0
,

G = 2

(
2α0 +

α2β
2
1

β2
2

− α1β1
β2

− 2α2β0
β2

− α−1β1
β0

)/
γ,

E = β1/γ, F = β2/γ.

Since the density f(x) at x → 0 has order O(xB), B > 0, and at x → ∞ its
order is O(xB+CeAx), A < 0, then for every finite m the moments E[Xm] are exist,
but their analytical expressions can not be obtained, and they can be calculated only
numerically.

3 The CKLS model [2]

In Chan - Karolyi - Longstaff - Sanders (CKLS) model it is assumed that µ(x) =
k(θ−x), σ2(x) = σ2x3. It turns out that a random process corresponding to this model
has a stationary density

f(x) =
n

x3
e−c(( θ

x
)2−2 theta

x
), x > 0,

where c = k
θσ2 , n is normalization constant. Note that such random process has only

the first stationary moment E[X] = θ.

4 The unrestricted model I [3]

In “unrestricted model I”

dr = (α1 + α2r + α3r
2)dt+

√
α4 + α5r + α6r3dW

are embedded some known models, that is, at a certain setting parameters {α} can get
any of these known models. Table of according in this case has the form

Stationary probability density “unrestricted I” process has the form

f(x) =
c(w)

σ2(x)
e
∫ x
w

2µ(u)

σ2(u)
du

=
c(w)

α4 + α5x+ α6x3
e

∫ x

w

2(α1 + α2u+ α3u
2)

α4 + α5u+ α6u3
du,

where c(w) is normalization constant, w is a fixed number from the set of possible
values of a random process, the specific value of which does not play some role.

To get the explicit form of expression for f(x) is possible, but it will be in general
case quite cumbersome, and we restrict ourselves to the case when the values of the
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Restrictions of parameters Model Equation of processes
α3 = α5 = α6 = 0 Vasicek dr = k(θ − r)dt+ σdW
α3 = α4 = α6 = 0 CIR dr = k(θ − r)dt+ σ

√
rdW

α3 = α6 = 0 Duffie - Kan dr = k(θ − r)dt+
√
α + βrdW

α1 = α4 = α5 = 0 Ahn - Gao dr = k(θ − r)rdt+ σr1.5dW
α3 = α4 = α5 = 0 CKLS dr = k(θ − r)dt+ σr1.5dW

parameters {α} provide performance properties of the probability density f(x). First,
we note that the volatility of the real process needs to be a real function, so σ2(r) =
α4+α5r+α6r

3 ≥ 0 for all values of r. At the same analytic properties of the probability
density depends on the type of the roots of equation α4 + α5r + α6r

3 = 0,α6 > 0. The
sign of the discriminant ∆ = ( α5

3α6
)3 + ( α4

2α6
)2 specifies the number of real and complex

roots of the equation. When ∆ > 0, there is one real and two complex conjugate roots.
When ∆ < 0, there are three different real roots. When ∆ = 0, real roots are multiples.

Let ∆ > 0 and the real root is r = r0, then we can write

α4 + α5r + α6r
3 = α6(r − r0)(r

2 + pr + q),

where r0, p and q are relatively sophisticated analytical expression and because of that
are not listed here. However, if α4 = 0, then r0 = 0, p = 0, q = α5

α6
. In this case, the

probability density is given by

f(x) =
c(w

α6x(x2 +
α5

α6
)
e

∫ x
w

2(α1+α2u+α3u
2)

α6u(u
2+

α5
α6

)
du

=

nx
2α1
α5

−1
(α6x

2 + α5)
α3
α6

−α1
α5

−1
e

2α2√
α5α6

arctg[x
√

α6
α5

]
,

where n is the normalization constant. For the existence of the probability density
its parameters must satisfy the inequalities: α1

α5
> 1, α3

α6
< 1. In order to at the same

time there exist stationary moments it is necessary for the expectation α3

α6
< 0, 5, for

variance α3

α6
< 0, for the third moment α3

α6
< −0, 5 and for the fourth moment α3

α6
< −1.

If ∆ < 0, denote the roots of the equation r0 > r1 > r2 so

α4 + α5r + α6r
3 = α6(r − r0)(r − r1)(r − r2).

Then the probability density is expressed in the form

f(x) = n
2∏

i=0

(x− ri)
−1+2(α1+α2ri+α3r2i )/α6

∏
j ̸=i(ri−rj). (9)

In this case must be performed the inequalities

2(α1 + α2r0 + α3r
2
0) > α6(r0 − r1)(r0 − r2), α3/α6 < 1.

For the existence of the m-th moment other than that necessary to perform the condi-
tions m

2
+ α3

α6
< 1. Unfortunately, the analytical expression of the normalization constant

n and moments E[rm] very cumbersome, they include hypergeometric functions. Under
these assumptions the process with such density has a bottom line equal to the largest
root, i.e. r(t) ≥ r0.
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Model γ E[X] V ar[X] Skewness Kurtosis

Vasicek 0 θ σ2

2k
0 3

CIR 0.5 q
c
= θ q

c2
= σ2θ

2k
2
√
q 3 + 6

q

Brennan - Schwartz 1.0 q
c
= θ θ2

c−1
4
√
c−1

c−2
3(c−1)(c+6)
(c−2)(c−3)

CKLS 1.5 q
c
= θ not exist not exist not exist

5 The unrestricted model II [2]

In the “unrestricted model II” process of short rate follows the equation

dr = k(θ − r)dt+ σrγdW, γ > 0. (1)

Therefore µ(x) = k(θ− x), σ2(x) = σ2x2γ and the stationary density f(x) has form

f(x) =
n

x2γ
e

1
x2γ

( qx
1−2γ

− cx2

2−2γ
), x > 0, (2)

where q = 2kθ
σ2 , c =

2k
σ2 , n is the normalization constant. Values of parameter γ, allow-

ing the convergence of the integral of f(x) on the interval (0,∞), determined by the
inequality γ > 0.5. At the same time, there are two critical points: γ = 0.5 (in this
case, the model is transformed into a short-term rate model CIR) and γ = 1, when
the probability density is reduced to form that corresponds to process of the Brennan
- Schwartz model [4]

f(x) =
q1+c

x2+cΓ(1 + c)
e−

q
x , x > 0.

When γ = 1.5, model “unrestrictions II” is known as the model CKLS. Vasicek model
is also a model embedded in the model “unrestrictions II” at γ = 0. For existence
of moments of order m, it is necessary the fulfilment of inequality 2γ > m + 1. Un-
fortunately, the expression for the probability density in general case does not allow
to calculate moments in analytical form, although for referred particular cases they
simply calculated. For the model CIR

E[Xm] = Γ(m+ q)/cmΓ(q);

for Brennan - Schwartz model

E[Xm] = qmΓ(1 + c−m)/Γ(1 + c),

the moments of order m exist if the inequality m < 1 + c is fulfilled. So that
Even before the appearance of the model “unrestrictions II” there were used models,

which then turned out to be special cases of this model. This is the model of the CIR
(1980) [5], which is obtained from the equation (1), if we assume that γ = 1.5 and
k = 0. Another particular version is the CEV model, i.e. model of constant elasticity
of variance that was proposed J. Cox and S. Ross (1976) [6], as in equation (1) made
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θ = 0. Properties of the processes generated by these models can be understood by
considering the limiting transition k → 0 in the first model or θ → 0 in the second.
When k and θ still finite the stationary regimes in the models exist and the probability
density of processes for these models is expressed in the form (2). However, in the
limiting case k = 0 or θ = 0 stationary regimes of processes no longer exist, and
the probability density can not be expressed in the form (2), and can be obtained as
solutions of partial differential equations

∂f(x, t|y, s)
∂t

− 1

2

∂2[σ2x3f(x, t|y, s)]
∂x2

= 0

for model CIR (1980) and

∂f(x, t|y, s)
∂t

+ β
∂[xf(x, t|y, s)]

∂x
− σ2

2

∂2[x2γf(x, t|y, s)]
∂x2

= 0

for model CEV at the boundary condition for both equations

lim
t→s

f(x, t|y, s) = δ(x− y).

Unfortunately, these equations can not be solved analytically, but we can say that for
k = 0 or θ = 0 the process generated by the equation (1) becomes unsteady for the
CIR model (1980) with the constant expectation and increasing with time variance,
and for model CEV changing with time both the expectation and the variance.
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