STATISTICAL ESTIMATION AND TESTING OF
TURNING POINTS IN MULTIVARIATE
REGIME-SWITCHING MODELS

V. 1. MALUGIN!, A. YU. NOVOPOLTSEV?
Belarusian State University

Minsk, BELARUS

e-mail: 'malugin@bsu.by, *novopsacha@gmail.com

Abstract

For vector autoregressive models with Markov switching states (MS-VARX)
we propose the algorithms of classification of states based on classified and non-
classified learning samples. We also suggest the procedure to exclude short-term
(acyclic) fluctuations in system states. It is based on successive application of al-
gorithms implementing the Bayesian plug-in decision rule of point-wise classifica-
tion and a statistical test for expected probability of misclassification. Accuracy
of the algorithms is examined by means of computer simulation experiments.

1 Models and tasks of the research

Regime-switching models (RS-Models) are convenient for analyzing complex systems
with cyclic changes of state [1]. Most studies are devoted to Markov-switching vector
autoregressive model (MS-VAR) [2]. In the case of independent states independent
regime-switching autoregressive and regressive models (IS-Models) should be used.
These models are also preferable under the Markov dependence condition when there
are high uncertainty about the future state of a system. The models of this type were
thoroughly studied in [3, 4]. In this paper, the object of study is the vector autoregres-
sive model with Markov-switching states including exogenous variables (MS-VARX),
thus allowing a multivariate linear regressive model (MS-MLR) as its special case.

Let a complex system at time ¢ is characterized by a random observation vector
defined on the probability space (€, F,P), where 2 — space of elementary objects
w € Q; P — probability measure: P(A) = P{w € A}, A € §. Let {Q,...,Qr1}
— decomposition of €2 into a finite number of non-empty disjoint subsets, such that
QG eq, P{U} =P({Hw e WU}) >0, Upegpy = 2, S(L) ={0,...,L —1}. These
subsets are the classes of states of a complex system, the number of which is L.

A random vector of observation y, = (2';, 2’;)’ € R" can be partitioned into sub-
sectors of endogenous variables x; = () € RN and exogenous variables z; = (z,) €
X C RM. It is assumed that, in general, the time series is described by a model
RS-VARX(p)(p > 1):

P
Tt = Z Ad(t),ixtfi + Bd(t)zt + 77d(t)t7 = 17 R 7T7 (1)

i=1
where z1_p, ..., 79 € RN — the set of the given initial values; Nd(t),+ € RY — random
disturbances or innovation process; d(t) € S(L) = {0, ..., L — 1} — the class of state

number.
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Model (1) should satisfy with the following conditions:

M.1. Segmented-stationary condition: matrices A;;(i = 1,...,p) satisfy with the
stationarity condition of VAR(p) model for each class of states [ € S(L).

M.2. Disturbance assumptions: En,, = Oy € RV, E{n,n1} = 0ps2 (1,5 =
1,...,T, l € S(L)), where 0, , — the Kronecker delta.

M.3. Exogenous variables z, = (21, ..., z) € X C RM are deterministic or sta-

tionary time series.
M.4. Structural heterogeneity conditions: A; # Ay and (or) B; # By Vk # 1, k,l €

S(L).
We consider a model with L (2 < L < s+ 1) classes of states, where s > 1 —
number of state switching points 1 < 7 < ... < 7, < T. Concerning the sequence of

states d(t) = d; € S(L) (t =1,...,T) there are two types of assumptions:

d.1. d; (t =1,...,T) — independent identically distributed random variables with
probability distribution P {d; =1} =m > 0(l € S(L)), Y jegpym =1 P{d =1} =
m>0(0€SL), Yiespym=1

d.2. di(t = 1,...,7) — homogeneous ergodic Markov chain (GCM) with the dis-
tribution, which is determined by the vector of probability of the initial state 7 and a
matrix of one-step transition probabilities P:

m=(m), m=P{d=1}>0(1eS(L), > m=1;

1€S(L)
P = (pu), pu = P{dp1 =1|d =k} >0, ZleS(L)pkl =1, ke S(L).

Under the conditions of d.1 and d.2, we get the models IS-VARX and MS-VARX,
respectively. Model (1) allows for a number of special cases: a model of multivariate
linear regression RS-MLR, if p =0, M > 1 [4]; a model RS-VAR without exogenous
variables, if p > 0, M =0 [2].

The true values of a model parameters {A;, By, ¥;}(l € S(L)), m, P and the mo-
ments of switching state {7;}(i = 1, ..., s) are unknown. There are a classified or a non-

classified sample of observations (X, Z) (X = (2;,) € RVT, Z = (z,) € XT C RMT)
when a vector of states d = (d;) € ST(L) is known and unknown, respectively. We
presented two statistical classification algorithms for MS-VARX model in these cases:
an EM-algorithm for joint estimation of the parameters and the vector of states for a
non-classified sample and a discriminant analysis algorithm in the case of a classified
sample for classification of out-of-sample observations. To eliminate short-term fluctu-
ations of states arising from misclassification, we propose a statistical test based on a
pointwise classification decision rule. For IS-MLR and IS-VARX models the problems
mentioned are solved in [3, 4].
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2 Representations for the model parameter esti-
mates

Model (1) under the assumptions M.1-M.4, d.1 or d.2 can be represented in the re-
gression form

xy = Hawyue + Naw) e (2)
where Iy = (Agw),1s - - - s Ade),p» Bag) is the block N x (pN 4 M)-matrix of parameters;
up = (i1, .oy @y, 2't) € RVPFM — the stacked vector of predetermined variables

formed from lagged endogenous and exogenous variables whose values are known at
time ¢.

In this case we use a sample of observations (X,U), where X = (24, ... ,x’Tzl €
RNT — the values of the endogenous variables, which correspond to the values U =
(u'y,...,u'p) € RVPT x X7 C RNp+M)T predefined exogenous variables. For the

model (2) we will also denote:

0, € R™ (m= N x (pN + M)+ N (N +1)/2 ) — stacked vector of the parameters
for the class [ € S(L) formed of independent elements of matrices {II;, ¥;} (I € S(L));

¢ € R (¢q=Lm+ (L—1)(L+1)) — parameters of a mixture of distributions
including {6,} and 7, P, ¢ € RY — statistical estimate of ¢ € RY;

D =(dy,...,dr) € ST(L) — state vector for the period under observation;

F1: = P{d, = I|X, U; ¢} — posteriori probability of the class | € S(L) at the
moment t;

ékl,t = P{diy1 =1|d; = k; X, U; <}5} — posteriori probability of a transition from
class k € S(L) to class | € S(L) at the moment ¢t (t=1,...,7 —1).

For a joint estimation of all the parameters and the state vector an EM-algorithm
( Expectation-Mazimization algorithm) is proposed. This algorithm belongs to the fam-
ily of Baum—Welch algorithms for splitting a mixture of multivariate distributions, con-
trolled by a hidden Markov chain [5]. In accordance with the general approach [4, 5],
we obtain an analytical representation for the estimated characteristics.

The representation for an estimate gg € R? is obtained by maximization of the

conditional expectation of the log-likelihood function for some given initial value ¢ €
R4

¢ = argmax A(¢, ¢) = argmax E;{I(¢; X, U, D)| X, U; ¢}, (3)
PpeERT PERT
o T
l(¢a Xv Ua D) = ln(ﬂ—cth (171; Uy, edl)) + Z ln(pdt—l,dth(xt; Ut edt))‘ (4)
t=2

Theorem 1. If the model (1), (2) satisfy the assumptions of M.1-M.4, d.2, then the
estimates {11;, %} (I € S(L)), &, P on a sample (X,U) are the solution of the problem
(3), (4) for the given vector of parameters ¢ € R:

T T -1 T T -1
T =Yi1, Dl = kal,t (Z :Yk,t1> AL = Z:Yl,txtult (Z ’NYl,tUtult> . (9)
—2

t=2
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T -1
Z%t Ty — Hth Ty — Hth (Z%t) ) (6)

t=1

where analytical representations for the posterior probabilities {7}, {é,d,t} are obtained
as specified above.

Corollary 1. Using the known block structure for the matrices I1,, we can get the
estimates {Aj1, ..., Ay, Bi} (1 € S(L)).

3 Classification and testing procedure

Bayesian decision rules (BDR) of pointwise and groupwise classification of multivariate
observations described by IS-VARX model, have been proposed in [4]. In the case of
a Markov-switching model we propose a decision rule of groupwise classification based
on the dynamic programming approach described in [6].

Lemma 1. If the model (1), (2) satisfy the assumptions of M.1-M.3, d.2, and param-
eters ¢ € R are known, then a BDR of groupwise classification is determined by the
condition

D= D(XT,U{") = argmaxi(¢; X{, U, D), (7)
DeST(L)

where (XT,UL) (XT = (2/4,...,2'r) € RVT, UL = (u/y,...,u'p) € RVPT x XMT C

RWNPHMTY s o sample of observations to be classified.

To solve the problem (7) with a help of a dynamic programming approach, we use a
special representation of the log-likelihood function I(¢; X, U, D) through the Bellman
function [7].

Theorem 2. Under the conditions of Lemma 1, a BDR of groupwise classification of
sample (XT,Ul') is implemented using dynamic programming method in accordance
with the following relationships:

dr = arg max Fp(k), d, = arg max <ft(k‘ di1) + Ft(k:)) ,t=T-1,T-2,...,1, (8)
keS(L) es(L

Fi(l)=0, Fi..() = kmsax (fe(k, D)+ Fy(k)), le S(L), t=1,..T—1, (9)
where {Fy(k)} are Bellmans functions and { f;(k,1)} are determined by formula
fe(k, 1) =61 (Inmg + Inpy (z1; ut, Ok)) + Inpr + In (24415 wra, 01), (10)
0y — Kronecker symbol, t =1,...,T — 1.

If {6,} (I € S(L)), #, P are estimates of a model parameters, then using them in (9)
we obtain a consistent ”plug-in” decision rule. To find these estimates, it is advisable
to apply the EM-algorithm proposed here. The ”plug-in” BDR of group classification
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can be used to classify out-of-sample observations (z,,u,) (1 =T +1,...,T+h), that
is, to forecast future states of a system.

We also suggest a procedure that allows to eliminate short-term (acyclic) fluctua-
tions in system states, which caused by errors of classification of the proposed decision
rules. It is based on application of algorithms implementing the Bayesian plug-in deci-
sion rule of pointwise classification and subsequent use of a statistical test for expected
probability of misclassification [8].
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