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Abstract

For vector autoregressive models with Markov switching states (MS-VARX)
we propose the algorithms of classification of states based on classified and non-
classified learning samples. We also suggest the procedure to exclude short-term
(acyclic) fluctuations in system states. It is based on successive application of al-
gorithms implementing the Bayesian plug-in decision rule of point-wise classifica-
tion and a statistical test for expected probability of misclassification. Accuracy
of the algorithms is examined by means of computer simulation experiments.

1 Models and tasks of the research

Regime-switching models (RS-Models) are convenient for analyzing complex systems
with cyclic changes of state [1]. Most studies are devoted to Markov-switching vector
autoregressive model (MS-VAR) [2]. In the case of independent states independent
regime-switching autoregressive and regressive models (IS-Models) should be used.
These models are also preferable under the Markov dependence condition when there
are high uncertainty about the future state of a system. The models of this type were
thoroughly studied in [3, 4]. In this paper, the object of study is the vector autoregres-
sive model with Markov-switching states including exogenous variables (MS-VARX),
thus allowing a multivariate linear regressive model (MS-MLR) as its special case.

Let a complex system at time t is characterized by a random observation vector
defined on the probability space (Ω,F,P), where Ω — space of elementary objects
ω ∈ Ω; P — probability measure: P(A) = P{ω ∈ A}, A ∈ F. Let {Ω0, . . . ,ΩL−1}
– decomposition of Ω into a finite number of non-empty disjoint subsets, such that
Ωl ∈ F, P{Ωl} = P({ω ∈ Ωl}) > 0,

∪
l∈S(L) Ωl = Ω, S(L) = {0, . . . , L − 1}. These

subsets are the classes of states of a complex system, the number of which is L.
A random vector of observation yt = (x′t, z

′
t)

′ ∈ ℜn can be partitioned into sub-
sectors of endogenous variables xt = (xtj) ∈ ℜN and exogenous variables zt = (ztk) ∈
X ⊂ ℜM . It is assumed that, in general, the time series is described by a model
RS-VARX(p)(p ≥ 1):

xt =

p∑
i=1

Ad(t),ixt−i +Bd(t)zt + ηd(t)t, t = 1, . . . , T, (1)

where x1−p, . . . , x0 ∈ ℜN — the set of the given initial values; ηd(t),t ∈ ℜN — random
disturbances or innovation process; d(t) ∈ S(L) = {0, . . . , L− 1} — the class of state
number.
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Model (1) should satisfy with the following conditions:
M.1. Segmented-stationary condition: matrices Al,i(i = 1, . . . , p) satisfy with the

stationarity condition of VAR(p) model for each class of states l ∈ S(L).
M.2. Disturbance assumptions: Eηl,r = 0N ∈ ℜN ,E{ηl,rη′l,s} = δr,sΣl (r, s =

1, ..., T, l ∈ S(L)), where δr,s — the Kronecker delta.
M.3. Exogenous variables zt = (zt1, ..., ztM)′ ∈ X ⊆ ℜM are deterministic or sta-

tionary time series.
M.4. Structural heterogeneity conditions: Al ̸= Ak and (or) Bl ̸= Bk ∀k ̸= l, k, l ∈

S(L).
We consider a model with L (2 ≤ L < s + 1) classes of states, where s ≥ 1 —

number of state switching points 1 < τ1 < . . . < τs < T . Concerning the sequence of
states d(t) ≡ dt ∈ S(L) (t = 1, ..., T ) there are two types of assumptions:

d.1. dt (t = 1, ..., T ) — independent identically distributed random variables with
probability distribution P {dt = l} = πl > 0 (l ∈ S(L)) ,

∑
l∈S(L) πl = 1; P {dt = l} =

πl > 0 (l ∈ S(L)) ,
∑

l∈S(L) πl = 1;

d.2. dt (t = 1, ..., T ) — homogeneous ergodic Markov chain (GCM) with the dis-
tribution, which is determined by the vector of probability of the initial state π and a
matrix of one-step transition probabilities P :

π = (πl), πl = P {d1 = l} > 0 (l ∈ S(L)) ,
∑

l∈S(L)
πl = 1;

P = (pkl) , pkl = P {dt+1 = l| dt = k} ≥ 0,
∑

l∈S(L)
pkl = 1, k ∈ S(L).

Under the conditions of d.1 and d.2, we get the models IS-VARX and MS-VARX,
respectively. Model (1) allows for a number of special cases: a model of multivariate
linear regression RS-MLR, if p = 0, M ≥ 1 [4]; a model RS-VAR without exogenous
variables, if p > 0, M = 0 [2].

The true values of a model parameters {Al, Bl, Σl}(l ∈ S(L)), π, P and the mo-
ments of switching state {τi}(i = 1, ..., s) are unknown. There are a classified or a non-
classified sample of observations (X̄, Z̄) (X̄ = (xt) ∈ ℜNT , Z̄ = (zt) ∈ XT ⊆ ℜMT )
when a vector of states d̄ = (dt) ∈ ST (L) is known and unknown, respectively. We
presented two statistical classification algorithms for MS-VARX model in these cases:
an EM-algorithm for joint estimation of the parameters and the vector of states for a
non-classified sample and a discriminant analysis algorithm in the case of a classified
sample for classification of out-of-sample observations. To eliminate short-term fluctu-
ations of states arising from misclassification, we propose a statistical test based on a
pointwise classification decision rule. For IS-MLR and IS-VARX models the problems
mentioned are solved in [3, 4].

206



2 Representations for the model parameter esti-

mates

Model (1) under the assumptions M.1–M.4, d.1 or d.2 can be represented in the re-
gression form

xt = Πd(t)ut + ηd(t),t, (2)

where Πd(t) = (Ad(t),1, . . . , Ad(t),p, Bd(t)) is the blockN×(pN+M)-matrix of parameters;
ut = (x′t−1, . . . , x

′
t−p, z

′
t)

′ ∈ ℜNp+M — the stacked vector of predetermined variables
formed from lagged endogenous and exogenous variables whose values are known at
time t.

In this case we use a sample of observations (X̄, Ū), where X̄ = (x′1, . . . , x
′
T )

′ ∈
ℜNT — the values of the endogenous variables, which correspond to the values Ū =

(u′1, . . . , u
′
T )

′ ∈ ℜNpT × XT ⊆ ℜ(Np+M)T of predefined exogenous variables. For the
model (2) we will also denote:

θl ∈ ℜm (m = N × (pN +M) +N (N + 1)/2 ) — stacked vector of the parameters
for the class l ∈ S(L) formed of independent elements of matrices {Πl, Σl} (l ∈ S(L));

ϕ ∈ ℜq (q = Lm+ (L− 1) (L+ 1)) — parameters of a mixture of distributions
including {θl} and π, P, ϕ̂ ∈ ℜq — statistical estimate of ϕ ∈ ℜq;

D = (d1, . . . , dT )
′ ∈ ST (L) — state vector for the period under observation;

γ̃l,t = P{dt = l|X̄, Ū ; ϕ̃} — posteriori probability of the class l ∈ S(L) at the
moment t;

ξ̃kl,t = P{dt+1 = l| dt = k; X̄, Ū ; ϕ̃} — posteriori probability of a transition from
class k ∈ S(L) to class l ∈ S(L) at the moment t (t = 1, . . . , T − 1).

For a joint estimation of all the parameters and the state vector an EM-algorithm
(Expectation-Maximization algorithm) is proposed. This algorithm belongs to the fam-
ily of Baum–Welch algorithms for splitting a mixture of multivariate distributions, con-
trolled by a hidden Markov chain [5]. In accordance with the general approach [4, 5],
we obtain an analytical representation for the estimated characteristics.

The representation for an estimate ϕ̂ ∈ ℜq is obtained by maximization of the
conditional expectation of the log-likelihood function for some given initial value ϕ̃ ∈
ℜq:

ϕ̂ = argmax
ϕ∈ℜq

Λ(ϕ, ϕ̃) = argmax
ϕ∈ℜq

Eϕ̃{l(ϕ; X̄, Ū ,D)|X̄, Ū ; ϕ̃}, (3)

l(ϕ; X̄, Ū ,D) = ln(πd1pX(x1;u1, θd1)) +
T∑
t=2

ln(pdt−1,dtpX(xt;ut, θdt)). (4)

Theorem 1. If the model (1), (2) satisfy the assumptions of M.1–M.4, d.2, then the
estimates {Π̂l, Σ̂l} (l ∈ S(L)), π̂, P̂ on a sample (X̄, Ū) are the solution of the problem
(3), (4) for the given vector of parameters ϕ̃ ∈ ℜq:

π̂l = γ̃l,1, p̂kl =
T∑
t=2

ξ̃kl,t

(
T∑
t=2

γ̃k,t−1

)−1

, Π̂l =
T∑
t=1

γ̃l,txtu
′
t

(
T∑
t=1

γ̃l,tutu
′
t

)−1

, (5)
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Σ̂l =
T∑
t=1

γ̃l,t(xt − Π̂lzt)(xt − Π̂lzt)
′

(
T∑
t=1

γ̃l,t

)−1

, (6)

where analytical representations for the posterior probabilities {γ̃l,t}, {ξ̃kl,t} are obtained
as specified above.

Corollary 1. Using the known block structure for the matrices Π̂l, we can get the
estimates {Âl,1, . . . , Âl,p, B̂l} (l ∈ S(L)).

3 Classification and testing procedure

Bayesian decision rules (BDR) of pointwise and groupwise classification of multivariate
observations described by IS-VARX model, have been proposed in [4]. In the case of
a Markov-switching model we propose a decision rule of groupwise classification based
on the dynamic programming approach described in [6].

Lemma 1. If the model (1), (2) satisfy the assumptions of M.1–M.3, d.2, and param-
eters ϕ ∈ ℜq are known, then a BDR of groupwise classification is determined by the
condition

D̂ ≡ D̂(X̄T
1 , Ū

T
1 ) = argmax

D∈ST (L)

l(ϕ; X̄T
1 , Ū

T
1 , D), (7)

where (X̄T
1 , Ū

T
1 ) (X̄

T
1 = (x′1, ..., x

′
T )

′ ∈ ℜNT , ŪT
1 = (u′1, ..., u

′
T )

′ ∈ ℜNpT × XMT ⊆
ℜ(Np+M)T ) is a sample of observations to be classified.

To solve the problem (7) with a help of a dynamic programming approach, we use a
special representation of the log-likelihood function l(ϕ; X̄, Ū ,D) through the Bellman
function [7].

Theorem 2. Under the conditions of Lemma 1, a BDR of groupwise classification of
sample (X̄T

1 , Ū
T
1 ) is implemented using dynamic programming method in accordance

with the following relationships:

d̂T = arg max
k∈S(L)

FT (k), d̂t = arg max
k∈S(L)

(
ft(k, d̂t+1) + Ft(k)

)
, t = T−1, T−2, ..., 1, (8)

F1(l) ≡ 0, Ft+1(l) = max
k∈S(L)

(ft(k, l) + Ft(k)) , l ∈ S(L), t = 1, ..., T − 1, (9)

where {Ft(k)} are Bellmans functions and {ft(k, l)} are determined by formula

ft(k, l) = δt,1 (ln πk + ln pX (x1; u1, θk)) + ln pkl + ln (xt+1; ut+1, θl) , (10)

δt1 — Kronecker symbol, t = 1, . . . , T − 1.

If {θ̂l} (l ∈ S(L)), π̂, P̂ are estimates of a model parameters, then using them in (9)
we obtain a consistent ”plug-in” decision rule. To find these estimates, it is advisable
to apply the EM-algorithm proposed here. The ”plug-in” BDR of group classification
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can be used to classify out-of-sample observations (xτ , uτ ) (τ = T +1, . . . , T +h), that
is, to forecast future states of a system.

We also suggest a procedure that allows to eliminate short-term (acyclic) fluctua-
tions in system states, which caused by errors of classification of the proposed decision
rules. It is based on application of algorithms implementing the Bayesian plug-in deci-
sion rule of pointwise classification and subsequent use of a statistical test for expected
probability of misclassification [8].

References

[1] Hamilton J.D. (2008). Regime-switching models. New Palgrave Dictionary of Eco-
nomics. 2nd Edition. Palgrave Macmillan, Basingstoke. pp. 1755-1804.

[2] Krolzig H.M. (1997). Markov-switching vector autoregressions. Modelling statisti-
cal inference and application to business cycle analysis. Springer, Berlin.

[3] Malugin V.I., Kharin Yu.S. (1986). On optimal classification or random observa-
tions different in regression equations. Automation and Remote Control. Vol. 7,
pp. 61-69 (in Russian).

[4] Malugin V.I. (2014). Methods of analysis of multivariate econometric models with
heterogeneous structure. BSU, Minsk (in Russian).

[5] Bilmes J.A. (1998). A Gentle Tutorial of the EM Algorithm and its Application to
Parameter Estimation for Gaussian Mixture and Hidden Markov Models: Techni-
cal Report. Int. Computer Science Institute. Berkeley, USA.

[6] Kharin Yu.S. (1996). Robustness in statistical pattern recognition. Kluwer Aca-
demic Publishers, Dordrecht.

[7] Malugin V.I., Novopoltsev A.Yu. (2015). Analysis of multivariate statistical mod-
els with heterogeneous structure in the case of hidden Markov dependence of
states. Proc. National Academy of Science of Belarus: physics and mathematics
series. Vol. 2, pp. 26-36 (in Russian).

[8] Malugin V.I. (2015). Algorithms of testing the cyclic structural changes in the
vector autoregression models with switching states. Informatica. Vol. 4, pp. 5-16
(in Russian).

209


