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Abstract

Proposed a new correction algorithm for the standard steganographic model
of binary message embedding into binary cover. Embedding is known to be influ-
ential on cover’s statistical characteristics and, thus, to be statistically detectable.
The proposed correction algorithm does not affects the embedded message and
under certain model assumptions restores the cover’s histogram of n-subwords
frequencies. The key condition for the n-subwords histogram restorability limits
the ratio of message to cover: it should not exceed some value called n-capacity
of cover. Some capacities found theoretically for locally uniform Markov covers.
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1 Introduction

Such tools for multimedia copyright protection, as digital watermarking or digital sig-
nature, use steganographic methods of covert embedding. The standard embedding
model is very simple [1, 2]. We have three binary sequences of {0, 1} values: cover
c = (ci)

N
i=1, selector s = (si)

N
i=1 and message m = (mi)

N1
i=1, where N1 is the number of

ones in selector s. Cover values ci corresponding to N1-subset of indices {i : si = 1} are
then being replaced with N1 message values. Cover sequence c with embedded message
m we call stego and denote c∗ = (c∗i )

N
i=1. After message embedding we may want to

correct stego c∗ for some goal. Of course, correction should not affect the embedded
message values {c∗i : si = 1}. Corrected stego sequence we denote c∗∗ = (c∗∗i )Ni=1.

The goal of correction is usually to somehow restore certain features of cover c,
distorted by message embedding. Obviously, we are not talking about restoration of
the cover c itself, because stego c∗ can not even be moved closer to it in Hamming
metric d by correction:

d(c, c∗) ≤ d(c, c∗∗).

Nevertheless, the cover’s statistical characteristics turn quite repairable. Here we aim
to approximately restore the histogram of frequencies of cover’s n-subwords:

∥Hn(c)−Hn(c
∗∗)∥ → min, (1)

where

Hn(x) ::=

(
#{0 ≤ i ≤ N − n : (xi+1, . . . , xi+n) = q}

N + 1− n

)
q∈{0,1}n

, x ∈ {0, 1}N . (2)
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In its formulation the problem (1) looks rather combinatorial, but it appears to be
effectively treatable by probabilistic and statistical methods based on few model as-
sumptions. The following probabilistic model assumptions are used to be standard in
literature [1, 2]:

A1: cover c, selector s and message m are mutually independent random
binary sequences;

A2: selector s is a Bernoulli process with success probability 0 < ε < 1;

A3: message m is a uniformly distributed sequence (Bernoulli process with
parity of successes and failures);

A4: cover c is a Markov chain.

Based on [1], we use extended versions of A2 and A4:

XA2: selector s is a stationary n-ergodic process;

XA4: cover c is a stationary n-ergodic process.

Remark. Compared to XA4, extension XA2 is more exotic and analytically harder to
work with, but it may sufficiently increase the capacity of stegosystem [1].

Remark. Under ergodicity we mean almost sure convergence of frequencies to proba-
bilities. Namely, let x : Z → {0, 1} be a stationary random binary process. Then we
call it n-ergodic, if in (2):

Hn(x)
a.s.−→

N→+∞
[x]n =

(
[x]nq
)
q∈{0,1}n , [x]

n
q ::= P{(x1, . . . , xn) = q}. (3)

Remark. We call [x]n in (3) an n-projection of x’s probability measure [x] ::= [x]∞.

Thus the distance (1) between histograms almost surely vanishes at N → +∞, if the
following two conditions hold for cover c and corrected stego c∗∗:

• they are both n-ergodic;

• they have the same n-projections of probability measures: [c]n = [c∗∗]n.

The correction algorithm proposed in [1] provide these conditions.

Remark. Under n-ergodicity the restoration of n-projection [c]n of cover’s measure guar-
antees the asymptotic restoration of cover’s n-subwords histogram Hn(c). So further
under histogram restoration we understand the asymptotic one.

2 Correction algorithm

Thus the embedding leads to deformation of the cover’s probability measure [c], and
we want to restore it (at least up to probabilities of n-subwords) by correction. It is
shown in [1] that under assumptions A1, XA2, A3 and XA4 the considered defor-
mation of [c] turns out to be a convolution with the specially transformed selector’s
measure. Namely, with the measure [su] of selector s multiplied by independent from
it uniformly distributed random binary sequence u (in the standard A2 case [su] is
Bernoulli measure with success probability ε/2). So the idea of correction algorithm is
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clear now: we just have to replace cover c with another stationary n-ergodic random
binary sequence k (let us call it corrector), whose measure (n-projection, to be precise)
[k]n convoluted with [su]n gives n-projection [c]n of the cover’s measure.

From the computational point of view, we need an inverse convolution. To obtain it,
one may use Fourier transform F, which provides correspondence between convolution
and multiplication. Without going into technical details, the object of our interest,
n-projection [k]n of the corrector’s measure, has the form [1]:

[k]n = 2−nF

(
F[c]n

F[su]n

)
, (Ff)q =

∑
q′∈{0,1}n

fq′(−1)|qq
′|, q ∈ {0, 1}n, (4)

reducing in the standard A2 case to:

[k]nq =

(
1− ε/2

1− ε

)n ∑
q′∈{0,1}n

[c]nq⊕q′

(
ε

ε− 2

)|q′|

, q ∈ {0, 1}n, (5)

where |q′|means Hamming weight of q′ and ⊕means elementwise XOR. The uniqueness
of [k]n is guaranteed by strict positiveness of [s]n (every binary n-word q ∈ {0, 1}n has
nonzero probability to appear as a subword in selector s, holds for A2). The existence
of n-ergodic corrector itself is guaranteed by strict positiveness of [k]n in (4) (or (5)
for A2). The last thing we should say about the algorithm is that we have to use
histogram Hn(c) instead of n-projection [c]n, which is unknown on practice.

Thus the correction algorithm is of the form:

step 1: compute cover’s histogram of n-subwords frequencies Hn(c);

step 2: usingHn(c) instead of [c]n in (4) (or (5) forA2), compute n-projection
[k]n of the corrector’s measure;

step 3: generate the corrector k by pseudorandom stationary Markov chain
of order n− 1 with transfer probabilities, providing computed [k]n, or
state the fail of correction, if [k]n is not strictly positive;

step 4: correct the values of stego c∗: replace c∗i with ki at the positions i,
not occupied by message (si = 0).

3 Capacity of cover

The assumption XA2 means, in particular, that the portion of ones N1/N in selector
s almost surely tends to [s]1 = P{si = 1} when the cover’s volume N grows. For this
reason under XA2 the value [s]1 can be thought of as a data transfer rate (DTR for
brevity) of stegosystem. Maximization of DTR seems rather natural objective, next
after cover’s histogram restoration. Hence the idea of capacity [1, 3] as a stegano-
graphic characteristic of cover. Informally, capacity is a maximum achievable DTR
among stegosystems providing histogram restorability for some particular cover. More
precisely, in considered model capacity characterizes cover’s distribution [c].

Following [1], consider two cases. If selector s is an arbitrary one (XA2 case),
providing restoration of cover’s n-subwords histogram, then maximum DTR is called

187



absolute n-capacity of cover’s measure [c] and denoted by ε∗n[c]. And it is called plain
n-capacity and denoted by εn[c], if selector is chosen among Bernoulli processes (A2
case). Obviously, both absolute and plain capacities of a fixed cover’s probability
measure [c] do not increase in n and εn[c] ≤ ε∗n[c].

Figure 1: Capacities of MC1
U(p) against p: plain ε2 > ε3 > ε4 > ε∞ (solid lines) and

absolute ε∗2 > ε∗3 (dashed lines).

Figure 2: Contour maps for plain capacities of MC2
U(p, s) on the (p, s) plane: ε3 on the

left and ε∞ (only for p+ s > 1) on the right. Lines correspond to multiples of 0.05.

Consider now two Markov models of locally uniform covers: the first order Markov
chain with uniformly distributed 1-subwords and the second order one with uniformly
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distributed 2-subwords. We call them MC1
U and MC2

U respectively. The first one
appears one-parametric with parameter:

p = P{0 → 1} = P{1 → 0}.

The second one is two-parametric with parameters:

p = P{00 → 1} = P{10 → 0},
s = P{11 → 0} = P{01 → 1}.

The arrows mean transfers within the cover’s sequence ci.

Theorem 1. [1] Absolute and plain capacities of MC1
U(p)-distributed cover are:

ε∗2 = 2~, ε∗3 = 4~2,

ε2 = 1−
√
1− 2~, ε3 = 1−

√
1− 4~2, ε4 = 1−

√
κ+ κ2 − κ3, ε∞ = 1−

√
1− 2~
1− ~

,

where ~ = min{p, 1− p}, κ = ~+
√
1 + ~2.

Theorem 2. Third and limiting (for p+s > 1) plain capacities of MC2
U(p, s)-distributed

cover are:

ε3 =

1−
∑

±
3

√
~− ±

√
~2− − ~3+, ~2− ≥ ~3+,

1− 2
√
~+T 1

3
(~−~

− 3
2

+ ), ~2− < ~3+,
, ε∞ = 1− sinh3Φ− tanh3 Ψ

sinh2Φ− tanh2 Ψ
· 1

coshΦ
,

where ~+ = 1
3
|1− p− s|, ~− = 1

2
|p− s|, Tν(x) = cos(ν arccosx) is a fractional analogue

of Chebyshev polynomial,

Ψ = arcsinh 3

√
|p− s|

p+ s− 2ps
, Φ = arccosh

(
p+ s− 2ps

(1− p)(1− s)
· 7 + cosh(4Ψ)

16 coshΨ

)
.

Remark. Both limiting plain capacities ε∞ for the considered cover models were ob-
tained based on some unproven hypotheses, confirmed by numerical experiments.

Remark. Comparison of absolute and plain capacities (Figure 1) shows that more so-
phisticated choice of positions for embedding may sufficiently increase the data transfer
rate of stegosystem.
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