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Abstract

We consider a configuration graph with N vertices whose degrees are inde-
pendent identically distributed according to power-law distribution under the
condition that the sum of vertex degrees is equal to n. A random graph dy-
namics as N,n → ∞ to take place in a random environment when parameter
of vertex degree distribution following uniform distribution on the finite fixed
interval. The limit distributions of the maximum vertex degree and the number
of vertices with a given degree were obtained.

1 Introduction

The study of random graphs has been gaining interest in connection with the wide
use of these models for the description of different complex networks (see e. g. [3]).
One of the ways for constructed such models based on configuration graphs introduced
in [2]. Configuration random graphs are being a good implementation of the social,
telecommunication networks and Internet topology. While considering real networks it
has been noted that they could be adequate representing by random graphs with the
vertex degrees being independent identically distributed random variables following
the power-law distribution [4]. In [7] it was shown that the distribution of a random
variable ξ, being equal to an arbitrary vertex degree could be defined as follows:

P{ξ = k} = k−τ − (k + 1)−τ , (1)

where k = 1, 2, . . . ; τ > 0. Moreover in [4] it was found that for present-day complex
telecommunication networks the typical values of the distribution (1) parameter τ
belongs to the interval (1, 2). Research in the last years showed that configuration
power-law random graphs could be used also for modeling forest fires as well as banking
system defaults, but in these cases usually τ > 2 [6]. Let N be a number of vertices
in the graph and random variables ξ1, . . . , ξN are equal to the degrees of vertices with
the numbers 1, . . . , N . These variables are independent and following the distribution
(1). The vertex degree is the number of its semiedges, i. e. edges for which adjacent
vertices are not yet determined. All of semiedges are numbered in an arbitrary order.
The graph is constructed by joining all of the semiedges pairwise equiprobably to form
edges. Those models admit multiple edges and loops. The sum of vertex degrees in any
graph has to be even, so if the sum ξ1 + . . .+ ξN is odd we add one extra vertex with
degree one. In [7] it was note that addition of this vertex together with its semiedge
does not influence the graph behaviour as N → ∞. That is why further we will consider
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only vertex degrees ξ1, . . . , ξN . An interesting fact (see e. g. [1]) that parameter τ of
the distribution (1) can be depended on N and even can be random.

We consider the subset of random graphs under the condition that sum of vertex
degrees is equal to n. It means that ξ1+. . .+ξN = n and ξ1, . . . , ξN are not independent.
Such conditional graphs can be useful for modeling of networks for which we can
estimate the number of links. They are useful also for studying networks without
conditions on the number of edges by averaging the results of conditional graphs with
respect to the distribution of the sum of degrees. We assume that as N → ∞ a
dynamics of our graph to take place in a random environment when τ is a random
variable following uniform distribution on the interval [a, b], 0 < a < b < ∞. Then
from (1) we find

p1 = P{ξ = 1} = 1− 1

(b− a) ln 2

(
1

2a
− 1

2b

)
,

pk = P{ξ = k} =
1

(b− a) ln k

(
1

ka
− 1

kb

)
− 1

(b− a) ln (k + 1)

(
1

(k + 1)a
− 1

(k + 1)b

)
,

where k = 2, 3, . . .
Denote by ξ(N) and µr the maximum vertex degree and the number of vertices with

degree r respectively. We obtained the limit distributions of ξ(N) and µr as N, n→ ∞.
The technique of obtaining these results is based on so called generalized allocation
scheme supported by V. F. Kolchin [5].

2 Proof Strategy

Let η1, . . . , ηN be auxiliary independent identically distributed random variables such
that

pk(λ) = P{ηi = k} = λkpk/B(λ), (2)

where k = 1, 2, . . . ; i = 1, . . . , N ; 0 < λ < 1 and

B(λ) =
∞∑
k=1

λkpk.

It is readily seen that for our subset of graphs

P{ξ1 = k1, . . . , ξN = kN} = P{η1 = k1, . . . , ηN = kN |η1 + . . .+ ηN = n}. (3)

This equation means that for random variables ξ1, . . . , ξN and η1, . . . , ηN the generalized
allocation scheme is valid and we can apply the known properties of this scheme to the
study of conditional random graphs.

Let η
(r)
i , ν

(r)
i , i = 1, . . . , N , be two sets of random variables such that

P{η(r)i = k} = P{ηi = k|ηi ≤ r}, P{ν(r)i = k} = P{ηi = k|ηi ̸= r}.
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It is shown in [5] that from (3) it is not hard to get:

P{ξ(N) ≤ r} = (1−P{η1 > r})N P{η(r)1 + . . .+ η
(r)
N = n}

P{η1 + . . .+ ηN = n}
(4)

and

P{µr = k} =

(
N

k

)
pkr(λ)(1− pr(λ))

N−kP{ν(r)1 + . . .+ ν
(r)
N−k = n− kr}

P{η1 + . . .+ ηN = n}
. (5)

From (4) and (5) we see that to obtain the limit distributions of ξ(N) and µr it suffices
to consider the asymptotic behaviour of the sums of independent random variables,
binomial (1 − P{η1 > r})N and binomial probabilities. By this way we proved the
main results of this paper (see the next section).

3 Results

Let parameter λ = λ(N, n) of the distribution (2) be determined by the relation

m = Eη1 = n/N

and let also σ2 = Dη1. We have the following results.

Theorem 1. Let N,n → ∞ in such a way that n/N → 1, (n − N)3/N2 → ∞ and
sequence r = r(N,n) are minimal natural numbers such that Nλrpr+1/p1 → γ, where
γ is a non-negative constant. Then P{ξ(N) = r} → e−γ, P{ξ(N) = r + 1} → 1− e−γ.

Theorem 2. Let N, n → ∞ in such a way that 1 < C1 ≤ n/N ≤ C2 < ∞ and
r = r(N,n) are chosen such that

aNλr+1

(b− a)B(λ)ra+1 ln r
→ γ,

where γ is a positive constant. Then for any fixed k = 0,±1,±2, . . .

P{ξ(N) ≤ r + k} = exp{−γλk(1− λ)−1}(1 + o(1)).

Theorem 3. Let N, n→ ∞ in such a way that n/N → ∞, a ≤ 1 and N(1−λ)2+δ → ∞
for some δ > 0. Then

P{| lnλ|ξ(N) − u ≤ z} → e−e−z

,

where −∞ < z <∞ and u = u(N, n) are chosen so that

N | lnλ|a

euua+1 ln (u/| lnλ|)
→ b− a

a
.
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Theorem 4. Let N,n→ ∞ in such a way that n/N → 1, n−N → ∞. Then for r > 2

P{µr = k} =
(Npr(λ))

k

k!
e−Npr(λ)(1 + o(1))

uniformly in the integer k such that (k − Npr(λ))/
√
Npr(λ) lies in any fixed finite

interval.

Theorem 5. Let N, n→ ∞ and one of the following conditions hold:

1. 1 < C1 ≤ n/N ≤ C2 <∞;

2. a ≤ 1, n/N → ∞, N(1− λ)2+δ → ∞,

where δ is a some positive constant. Then for any fixed natural r

P{µr = k} = (σrr
√
2πN))−1e−u2

r/2(1 + o(1))

uniformly in the integer k such that ur = (k−Npr(λ))/(σrr
√
N) lies in any fixed finite

interval, where

σ2
rr = pr(λ)

(
1− pr(λ)−

(m− r)2

σ2
pr(λ)

)
.

4 Acknowledgements

The study is supported by the Russian Foundation for Basic Research, grant 16-01-
00005.

References

[1] Bianconi G., Barabasi A.-L. (2001). Bose-Einstein condensation in complex net-
works. Physical Review Letters. Vol. 86, pp. 5632-5635.

[2] Bollobas B. (1980). A probabilistic proof of an asymptotic formulae for the number
of labelled regular graphs. Eur. J. Comb.. Vol. 1, pp. 311-316.

[3] Durrett R. (2006). Random Graph Dynamics. Cambridge University Press, Cam-
bridge.

[4] Faloutsos C., Faloutsos P., Faloutsos M. (1999). On power-law relationship of the
Internet topology. Computer Communications Rev.. Vol. 29, pp. 251-262.

[5] Kolchin V. F. (1999). Random Graphs. Cambridge University Press, Cambridge,
New York.

[6] Leri M., Pavlov Yu. (2014). Power-law random graphs’ robustness: link saving
and forest fire model.Austrian Journal of Statistics. Vol. 43, pp. 229-236.

[7] Reittu H., Norros I. (2004). On the power-law random graph model of massive
data networks. Performance Evaluation. Vol. 55, pp. 3-23.

181


