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Abstract

We consider power-law configuration graphs with node degrees drawn from
the power-law distribution with the parameter following the uniform distribution
on a chosen interval. By computer simulation we study the robustness of these
graphs from a viewpoint of link saving in the two cases of destruction process:
the “random breakdown” and the “targeted attack”.

1 Introduction

The study of random graphs with node degrees following the power-law distribution
continues to attract special interest (see e.g. [3], [5]). The use of such models has been
widening with the changes in the structure of massive data networks and with the
appearance of new ones. Power-law random graphs used to be considered a good rep-
resentation of the AS-level topology (see e.g. [4], [7], [9]) and, moreover, variations of
these models could be used in other applications. Along with the studies of the struc-
ture of present-day complex networks, the problem of their robustness and vulnerability
to various types of breakdowns remains rather pressing (see e.g. [2], [3], [8]).

2 Power-law configuration random graph

We consider power-law random graphs with the number of nodes N . Random variables
ξ1, ξ2, . . . , ξN are independent identically distributed variables drawn from the power-
law distribution:

P{ξ ≥ k} = k−τ , τ > 1, k = 1, 2, . . . . (1)

We use the graph construction procedure introduced in [1], where such models were
first called configuration graphs. Starting with a predefined number of nodes we draw
node degrees from the distribution (1) with the parameter τ following the uniform
distribution on a predefined interval (a, b]. The node degree gives the number of stubs
for each node, numbered in an arbitrary order. Then all the stubs are joined one to
another equiprobably forming links. The sum of node degrees has to be even, otherwise
one stub is added to a randomly chosen node to form a lacking connection. The graph
construction allows loops and multiple links.
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3 Robustness in random environment: link saving

The distribution (1) with the parameter τ ∈ (1, 2) has finite expectation and infinite
variance. As the value of τ exceeds 2 the variance of the distribution (1) becomes finite.
The power-law configuration graphs with τ ∈ (1, 2) are known to contain a so-called
giant component ( [1], [3], [9] etc.) – a connected set of nodes, the number of nodes in
which has the expectation proportional to the number of graph nodes N , as N → ∞.

In [6] we considered power-law graphs with the values of the parameter τ ∈ (1, 2)
fixed for each node. With the evolution of networks the value of τ is regarded to change
not only within the stated interval (1, 2). It may also happen to be a random variable.
Therefore here we consider the parameter τ being drawn from the uniform distribution
on the interval (a, b]. As it was mentioned above the interval (1, 2) is interesting due
to its application to the Internet graphs and the existence of the giant component.
Power-law graphs with the parameter τ ∈ (2, 3) do not contain the giant component,
but are useful for the studies of forest fire models [6]. The interval (1, 3) was chosen
as a generalization. As in the previous work [6], here we also consider the two types
of breakdowns: a “targeted attack” on the nodes with the highest degrees and the
“random breakdown” meaning the removal of equiprobably chosen nodes.

To conduct simulations we modeled graphs of the sizes N ∈ [1000, 10000] with the
three ranges of the parameter τ : (1, 2], (1, 3] and (2, 3]. The purpose was to look at how
the graph structure changes with the destruction of its nodes. Let random variables
η1, η2, . . . , ηs be equal to the sizes of graph components in decreasing order, thus η1
is the percentage of nodes in the largest component, η2 – the percentage of nodes in
the second-sized component, etc. Let s be the number of graph components. Let us
consider a graph being destroyed if {η1 ≤ 2η2}, which means that the size of the second
largest component becomes greater or equal to half the size of the largest component.
Thus we derived the regression relations between the size of the largest component η1
and the percentage of nodes removed from the graph r. In the case of a “targeted
attack” relations were as follows:

η1 = 53.2− 8.9r − 6.2 ln r, τ ∈ (1, 2],

η1 = 31.9− 7.0r − 9.1 ln r, τ ∈ (1, 3],

η1 = −1.3 + 2.5r − 3.9 ln r, τ ∈ (2, 3].

The determination coefficients (R2) of these regression models are equal to 0.99, 0.98
and 0.96, respectively. For the process of “random breakdowns” we derived the follow-
ing relations:

η1 = 88.1− 1.5r, τ ∈ (1, 2],

η1 = 73.3− 1.3r, τ ∈ (1, 3],

η1 = 20.2− 2.7
√
r, τ ∈ (2, 3].

with determination coefficients 0.97, 0.95 and 0.99, respectively. The results showed
that in all cases the graph size N does not affect the size of the largest component. As
for the sizes of second-sized components they will diminish slightly with the removal
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of graph nodes and will not exceed 20% when τ ∈ (1, 2], 15% when τ ∈ (1, 3], and
6% when τ ∈ (2, 3] of graph nodes. The number of graph components in the case of a
“targeted attack” slightly increases with the removal of nodes, although in the case of
a “random breakdown” this number decreases.

In Figures 1 and 2 we plot the results of the estimation of the regression relations
between the probabilities P{A} (where A is the following event: {η1 ≤ 2η2}) of graph
destruction, the percentage of nodes removed from the graph r and the graph size N .
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Figure 1: The probabilities of graph destruction in the case of a “targeted attack”
(left-hand curve stands for N = 10000, right-hand curve – N = 1000).
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Figure 2: The probabilities of graph destruction in the case of a “random breakdown”
(left-hand curve stands for N = 1000, right-hand curve – N = 10000).

Simulation results showed that power-law configuration graphs are much more ro-
bust to “random breakdowns” than to “targeted attacks” on the nodes with the highest
degrees. To destroy such a graph by removing nodes with high degrees it is enough
to take away 1 − 5% of them. However, in the case of random nodes removal, the
graph will be ruined by the destruction of 55− 75% of its nodes. The obtained results
support previous conclusions [6] that the robustness of these graphs strongly depends
on the value of the parameter τ . Thus, in the case when τ ∈ (2, 3] graphs are more
vulnerable to both targeted and random breakdowns than in the cases when τ ∈ (1, 2]
and τ ∈ (1, 3].
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