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Abstract
Regression model under classification of the dependent variable is considered.

Asymptotic properties of plug-in predictive statistic are obtained.

1 Introduction

In this paper we consider a regression model with incompletely observed dependent
variable: instead of its true value we observe only one of the given intervals (classes)
in which the true value falls. We denote this type of distortion by classification. Clas-
sification is a special case of grouping [2].

In discriminant function analysis [3] we use previous observations to predict the
class numbers for a future moment. However, in this paper we give a point prediction
for the dependent variable.

2 Regression time series under classification of the

dependent variable

Let
Yt = F (Xt; θ

0) + ξt, t = 1, . . . , T, (1)

be a multiple regression time series defined on some probability space (Ω,F ,P), where
T is the sample size; θ0 = (θ01, . . . , θ

0
m)

′ ∈ Θ ⊂ Rm is the unknown regression vector
parameter; Xt = (Xt,1, . . . , Xt,N)

′ ∈ X ⊆ RN is the observed N -dimensional vector of
predictors; Yt ∈ R1 is the nonobservable dependent variable; ξt ∈ R1 is the normally
distributed random error with mean E{ξt} = 0 and unknown variance 0 < D{ξ2t } =
(σ0)2 < +∞; {ξt}nt=1 are jointly independent. The true model parameter is a composite
vector-column δ0 = (θ0

′
, (σ0)2)′ ∈ Ξ ⊆ Rm+1.

Let the set of real numbers R be divided into K nonintersecting intervals (2 ≤ K <
+∞):

Ak = (ak−1, ak], k ∈ K = {1, 2, . . . , K}, −∞ = a0 < a1 < · · · < aK = +∞. (2)

This set of intervals defines classification of the dependent variable Yt:

Yt belongs to class νt ∈ K, if Yt ∈ Aνt . (3)

Instead of exact values of Y1, . . . , YT we observe only corresponding class (interval)
numbers ν1, . . . , νT ∈ K. Our aim is to construct a forecast of the dependent variable
YT+1 for some future predictor XT+1.
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3 Maximum likelihood estimator

Introduce the notation:

P (k; δ,X) = Φ

(
ak − F (X; θ)

σ

)
− Φ

(
ak−1 − F (X; θ)

σ

)
,

where k ∈ K, δ = (θ′, σ2)′ ∈ Ξ, X ∈ X, Φ(·) is the standard normal distribution
function. Model assumptions (1), (2), (3) determine the probability distribution of the
random observations νt ∈ K:

PXt,δ{νt = k} = PXt,δ{Yt ∈ Ak} = P (k; δ,Xt), t = 1, . . . , T ;

observations {νt}nt=1 are jointly independent.

Lemma 1. Under model assumptions (1), (2), (3) the log-likelihood function is

l(δ;H,X ) =
T∑
t=1

ln

(
Φ

(
aνt − F (Xt; θ)

σ

)
− Φ

(
aνt−1 − F (Xt; θ)

σ

))
, (4)

where X = {X1, . . . , XT} is the experimental design, H = {ν1, . . . , νT} is the set of
classified observations.

Maximum likelihood estimator (MLE) δ̂T of the model parameter δ0 is determined
by maximization of the log-likelihood function (4):

δ̂T = (θ̂T , (σ̂T )2)′ : l(δ̂T ;H,X ) = max
δ∈Ξ

l(δ;H,X ). (5)

The following theorems present asymptotic properties of MLE δ̂T [1].

Theorem 1. Let the following conditions hold:

SC1. K > 2.

SC2. Regression coefficient space Θ is a closed bounded subset of Rm; there are known
bounds σ̄2 > 0 and ¯̄σ2 > 0, that σ̄2 ≤ (σ0)2 ≤ ¯̄σ2.

SC3. Regressors space X ⊆ RN is a compact space.

SC4. Function F (X; θ) is continuous on X×Θ.

SC5. For any ε > 0 there exists γ = γ(ε) > 0 that the following limit expression

lim
T→∞

1
T

∑T
t=1 I{|F (Xt;θ0)−F (Xt;θ)|≥γ} = b

holds for any θ ∈ Θ, |θ − θ0| ≥ ε, where 0 < b = b(θ, θ0, γ, F (·)) ≤ 1, I{A} is the
identifier of event A.
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Then MLE δ̂T is strongly consistent:

δ̂T
P=1−−−→
T→∞

δ0.

Define Fisher information matrix:

ΓT (δ) =
T∑
t=1

EXt,δ0{(∇δlnP (νt; δ,Xt))(∇δlnP (νt; δ,Xt)
′)}.

Theorem 2. Let the following conditions hold:

A1. MLE δ̂T is a consistent estimator of the parameter vector δ0.

A2. For any fixed δ ∈ Ξ functions F (X; θ), ∂F (X;θ)
∂θi

, ∂2F (X;θ)
∂θi∂θj

, ∂3F (X;θ)
∂θi∂θj∂θs

, i, j, s =

1, . . . ,m, are bounded on X;

A3. Γ̄T (δ
0) = 1

T
ΓT (δ) is a positive definite matrix: Γ̄T (δ

0) ≻ 0.

A4. lim
T→∞

∣∣Γ̄T (δ
0)
∣∣ = b > 0.

Then MLE δ̂T is asymptotically normal distributed:

L
{
T

1
2 (Γ̄T (δ

0)
1
2 )(δ̂T − δ0)

}
−−−→
T→∞

Nm+1(0m+1, Im+1).

4 Plug-in predictive statistic

Under model assumptions (1), (2), (3) plug-in forecasting statistic is

ŶT+1 = F (XT+1; θ̂
T ). (6)

Let us present Fisher information matrix ΓT (δ
0)−1 in a block form:

ΓT (δ
0)−1 =

[
(ΓT (δ

0)−1)(1,1) (ΓT (δ
0)−1)(1,2)

(ΓT (δ
0)−1)(2,1) (ΓT (δ

0)−1)(2,2)

]
,

where dimensions of matrices (ΓT (δ
0)−1)(1,1), (ΓT (δ

0)−1)(1,2), (ΓT (δ
0)−1)(2,1),

(ΓT (δ
0)−1)(2,2) are m×m, m× 1, 1×m, 1× 1 correspondingly.

Theorem 3. Let MLE δ̂T be strongly consistent and asymptotically normal distributed
estimation of δ0 and function F (X; θ) be twice continuously differentiable with regard
to θ. Then forecast (6) is asymptotically unbiased:

EXT+1,δ0{ŶT+1 − YT+1} −−−→
T→∞

0,

and its mean squared risk is

R = EXT+1,δ0{(ŶT+1 − YT+1)
2} −−−→

T→∞

−−−→
T→∞

(σ0)2 + (∇δF (XT+1; θ
0))′(ΓT (δ

0)−1)(1,1)(∇δF (XT+1; θ
0)).
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5 Computer simulations

Consider regression time series:

Yt = F (Xt; θ
0) + ξt = θ01X

θ02
t,1X

θ03
t,2 + ξt, t = 1, . . . , T.

where θ0 = (2.248, 0.404, 0.803)′, (σ0)2 = 1. Let K = 3, a0 = −∞, a1 = 12, a2 = 24,
aK = +∞ and {Xt,1, Xt,2}Tt=1 be an analytical grid on [0, 10] × [0, 10]. For each T we

run Q = 100 Monte-Carlo simulations and find forecasts Ŷ q
T+1, q = 1, ...Q, for XT+1 =

(11, 11)′. We estimate mean squared risk using R̂1 =
1
Q

∑Q
q=1

(
Ŷ q
n+1 − Y q

n+1

)2
and R̂2 =

1
Q

∑Q
q=1

(
(σ̂T,q)2 + (∇δF (XT+1; θ̂

T,q))′(ΓT (δ̂
T,q)−1)(1,1)(∇δF (XT+1; θ̂

T,q))
)
. Simulation

results are presented in Figure 1. From the figure we see that mean squared risk
converges to (σ0)2 = 1.
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Figure 1: Estimations of squared prediction risks
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