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Abstract
Regression model under classification of the dependent variable is considered.
Asymptotic properties of plug-in predictive statistic are obtained.

1 Introduction

In this paper we consider a regression model with incompletely observed dependent
variable: instead of its true value we observe only one of the given intervals (classes)
in which the true value falls. We denote this type of distortion by classification. Clas-
sification is a special case of grouping [2].

In discriminant function analysis [3] we use previous observations to predict the
class numbers for a future moment. However, in this paper we give a point prediction
for the dependent variable.

2 Regression time series under classification of the
dependent variable

Let

Y;:F(Xt;eo)_‘_gtat:lv“'aTa (1)
be a multiple regression time series defined on some probability space (€2, F, P), where
T is the sample size; 0° = (69,...,60°) € © C R™ is the unknown regression vector

parameter; X; = (X;1,...,X;ny) € X C RY is the observed N-dimensional vector of
predictors; Y; € R! is the nonobservable dependent variable; & € R! is the normally
distributed random error with mean E{¢;} = 0 and unknown variance 0 < D{¢?} =
(09)? < +oo; {& 1}, are jointly independent. The true model parameter is a composite
vector-column 6° = (0%, (6°)?) € = C R™*1,

Let the set of real numbers R be divided into K nonintersecting intervals (2 < K <
+00):

A = (ag_1,a5), ke K={1,2,... K}, —c0o=ay<a; < - <ag=+00. (2)

This set of intervals defines classification of the dependent variable Y;:

Y; belongs to class v, € K, if Y; € A,,. (3)
Instead of exact values of Y1, ..., Yy we observe only corresponding class (interval)
numbers vy, ...,vpr € K. Our aim is to construct a forecast of the dependent variable

Y71 for some future predictor Xp .
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3 Maximum likelihood estimator

Introduce the notation:

P(k;6,X) = @ (m) By <a’“‘1 — P, 9)) ,

g o

where k € K, 6 = (¢/,0%) € 2, X € X, ®(-) is the standard normal distribution
function. Model assumptions (1), (2), (3) determine the probability distribution of the
random observations v; € K:

PXt,é{Vt = k‘} = PX”;{Y; S Ak} = P(k‘, 0, Xt), t=1,....T;
observations {1;}}, are jointly independent.

Lemma 1. Under model assumptions (1), (2), (3) the log-likelihood function is

1(6: H,X) = iln (@ (%) — (a”” _f(X“ 9>)), (4)

where X = {Xy,...,Xr} is the experimental design, H = {v1,...,vr} is the set of
classified observations.

Maximum likelihood estimator (MLE) 67 of the model parameter 6° is determined
by maximization of the log-likelihood function (4):

6T = (67, (62« 1(6T H, X) = max [(3; M, X). (5)
€=

The following theorems present asymptotic properties of MLE o7 [1].

Theorem 1. Let the following conditions hold:

SC1. K > 2.

SC2. Regression coefficient space © is a closed bounded subset of R™; there are known
bounds > > 0 and G° > 0, that 5> < (¢°)? < &%

SC3. Regressors space X C RY is a compact space.
SCY. Function F(X;0) is continuous on X X ©.

SCh5. For any € > 0 there exists v = vy(g) > 0 that the following limit expression

. T
Hm 7 3, Lje(xu00) - F(X00)24) = D
T—o00

holds for any 6 € ©, |0 — 0°] > ¢, where 0 < b =b(0,0°,~,F(-)) <1, Iay is the
identifier of event A.
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Then MLE 67 is strongly consistent:

< P=1
or —— §°.
T—o0

Define Fisher information matrix:

Lr(0) =Y By, 0{(Vsln P(4:6, X)) (Vsln P(v; 6, X,)) }.

t=1

Theorem 2. Let the following conditions hold:
Al. MLE 7 is a consistent estimator of the parameter vector 6°.

A2. For any fixred 6 € Z functions F(X;0), 8Fégi;9), 82851_(;;;9), 225959)7(52’ i,7,5 =

1,...,m, are bounded on X;
A3. T7(0°) = £T1(0) is a positive definite matriz: [p(6°) = 0.
A4. lim |T7(8%)] =b> 0.

T—o0

Then MLE 67T is asymptotically normal distributed:

£{THT()H) 0" = 8%} —— N (O, Tans).

4 Plug-in predictive statistic

Under model assumptions (1), (2), (3) plug-in forecasting statistic is
Yy = F(Xri1;0"). (6)
Let us present Fisher information matrix I'7(6°)™" in a block form:

-1 (FT(5O)_1)(1’1) (FT((SO)_I)(I’2)
= (FT(50)_1)(2’1) (FT((SO)_I)(2’2) )

where dimensions of matrices ([7(6%)~H)®Y, (Tp(00)"HED | (Tp(6°)71)ED,
(T7(6%) 7132 are m x m, m x 1, 1 x m, 1 x 1 correspondingly.

(6%

Theorem 3. Let MLE 67 be strongly consistent and asymptotically normal distributed
estimation of 6° and function F(X;0) be twice continuously differentiable with regard
to 0. Then forecast (6) is asymptotically unbiased:

E Ve = Yrp} —— 0
XT+1760{ T+1 T—|—1} T o0 Y
and its mean squared risk is
R=E Vi — Yr)? ——
XT+1,50{( T+1 T+l) } T—oo

—— (0")° + (Ve F (X413 0°)) (L1 (8°) ) MY (V5 F (X153 0%)).

T—o00

119



5 Computer simulations

Consider regression time series:
0 0y 03 05
Vi=F(X;0") +& =00 X X5+ & t=1,....T.

where 0° = (2.248,0.404,0.803)', (6°)?2 = 1. Let K = 3, ay = —00, a; = 12, ay = 24,
ax = +oo and {X;1, Xi2}7_; be an analytical grid on [0, 10] x [0, 10]. For each T" we
run () = 100 Monte-Carlo simulations and find forecasts Y, ,, ¢ = 1,...Q, for Xy =

A ~ 2 ~
(11,11)". We estimate mean squared risk using Ry = % Zqul ( = anﬂ) and Ry =
iye, ((&ﬂ )2 4 (Vs F (X 079)) (Dp(879) 1) 0D (Vs (X éT»q))). Simulation

results are presented in Figure 1. From the figure we see that mean squared risk
converges to (6%)? = 1.
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Figure 1: Estimations of squared prediction risks
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