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Abstract

The problem of sequential testing of simple hypotheses for time series with a
trend is considered. Analytical expressions and asymptotic expansions of error
probabilities and expected numbers of observations are obtained. The result is
illustrated numerically.
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1 Introduction

The sequential approach to test parametric hypotheses was proposed by Wald (see [6])
and is applied in many practical problems of statistical data analysis. The problem of
sequential test characteristics (error probabilities and expected number of observations)
evaluation is well studied for the case of identical distribution of observations (see [1] –
[6]). In this paper, the model of non-identical distribution is considered.

Let x1, x2, ... be observations of time series with a trend:

xt = θTψ(t) + ξt, t = 1, 2, 3, ..., (1)

where ψ(t) = (ψ1(t), ψ2(t), ..., ψm(t))
T , t ≥ 1, are the vectors of basic functions of

trend, θ = (θ1, θ2, ..., θm)
T ∈ Rm is an unknown vector of coefficients, and {ξt, t ≥ 1} is

the sequence of independent identically distributed random variables, ξt ∼ N(0, σ2).
Consider two simple hypotheses:

H0 : θ = θ0, H1 : θ = θ1, (2)

where θ0, θ1 ∈ Rm are known vectors.
Denote the accumulated log-likelihood ratio statistic:

Λn = Λn(x1, x2, ..., xn) =
n∑

t=1

λt, (3)

where λt = ln

(
pt(xt, θ

1)

pt(xt, θ0)

)
is the log-likelihood ratio calculated on the observation xt,

and pt(x, θ) is the probability density function of xt provided the parameter value is θ.
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To test these hypotheses, after n observations one makes the decision:

d = 1[C+,+∞)(Λn) + 2 · 1(C−,C+)(Λn). (4)

The thresholds C− and C+ are the parameters of the test. Decisions d = 0 and d = 1
mean stopping of the observation process and acceptance of H0 or H1 correspondently.

According to Wald (see [6]) we use C+ = ln

(
1− β0
α0

)
and C− = ln

(
β0

1− α0

)
, where

α0, β0 are the given values for probability errors of types I and II respectively.

2 Main results

Introduce the notation: E(k)(·), D(k)(·) are conditional expected value and variance
provided hypothesis Hk is true (k = 0, 1); for n ≥ 1,

σ2
n =

(θ0 − θ1)Tψ(n)ψT (n)(θ0 − θ1)

σ2
, µ(k)

n =
(−1)k+1σ2

n

2
, s2n =

n∑
t=1

σ2
t , m

(k)
n =

(−1)k+1s2n
2

,

An = {aij}n×n, aij =

{
1, i ≥ j,

0, otherwise;
Xn = (λ1, λ2, ..., λn)

T ,

Tn = (Λ1,Λ2, ...,Λn)
T = AnXn, µ

(k)
Tn

= AnE
(k)(Xn),ΣTn = AnCov(Xn, Xn)A

T
n ;

Φ(·) is the cumulative distribution function of the standard normal distributionN(0, 1).
PutN = inf{n ∈ N : Λn /∈ (C−, C+)},Γ = (θ0−θ1)(θ0−θ1)T andHn =

∑n
i=1 ψ(i)ψ

T (i).
Let α, β be the factual values of the error type I and II probabilities for test (3), (4).

Theorem 1. If the trace of the matrix ΓHn tends to +∞ when n → +∞, then the
test terminates finitely with probability 1.

Proof. The proof is derived from the fact that Pk(N > n) ≤ Pk(Λn ∈ (C−, C+)).

Corollary 1. If tr{ΓHn} is bounded, then there exists a positive constant L so that
s2n → L when n→ +∞. In this case, we have:

lim
n→+∞

Pk(Λn ∈ (C−, C+)) = Φ

(
2C+ − (−1)k+1L

2
√
L

)
− Φ

(
2C− − (−1)k+1L

2
√
L

)
> 0.

Theorem 2. Under the Theorem 1 condition following expressions are valid for the
characteristics of test (2):

E(k)(N) = 1 +
+∞∑
i=1

∫ C+

C−

dsi

∫ C+

C−

dsi−1...

∫ C+

C−

ni(s, µ
(i)
Ti
,ΣTi

)ds1, k = 0, 1;

α =

∫ +∞

C+

n1(s1, µ
(0)
1 , σ2

1)ds1 +
+∞∑
i=2

∫ +∞

C+

dsi

∫ C+

C−

dsi−1...

∫ C+

C−

ni(s, µ
(0)
Ti
,ΣTi

)ds1,

β =

∫ C−

−∞
n1(s1, µ

(1)
1 , σ2

1)ds1 +
+∞∑
i=2

∫ C−

−∞
dsi

∫ C+

C−

dsi−1...

∫ C+

C−

ni(s, µ
(1)
Ti
,ΣTi

)ds1.
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Proof. The results above are proved directly by using the properties of multivariate
normal distributions.

Corollary 2. Under the Theorem 1 condition, the following inequalities hold:

E(k)(N) ≤ 1 +
+∞∑
i=1

∫ iC+

iC−

n1(x, m̄
(k)
i , s̄2i )dx, k = 0, 1;

α ≤ 1− Φ

(
C+ − µ

(0)
1

σ1

)
+

+∞∑
i=2

∫ +∞

C+

∫ C+

C−

n1(x,m
(0)
i−1, s

2
i−1)n1(y, x+ µ

(0)
i , σ2

i )dxdy,

β ≤ Φ

(
C− − µ

(1)
1

σ1

)
+

+∞∑
i=2

∫ C−

−∞

∫ C+

C−

n1(x,m
(1)
i−1, s

2
i−1)n1(y, x+ µ

(1)
i , σ2

i )dxdy,

where m̄
(k)
i =

(−1)k+1

2

i∑
j=1

(i+ 1− j)σ2
j , s̄

2
i =

i∑
j=1

(i+ 1− j)2σ2
j .

To construct asymptotic expansions, split the state space of Λn into K + 2 cells:

A0 = (−∞, C−), Ai = [Ci−1, Ci), i = 1, K, AK+1 = [C+,+∞)

C− = C0 < C1 < C2 < ... < CK = C+, Ci = C− + ih, h =
C+ − C−

K
, i = 1, K.

Denote f
C+

C−
(x) =

([
x− C−

h

]
+ 1

)
· 1(C−,C+)(x) + (K + 1) · 1[C+,+∞)(x).

For the random sequence Λn, let us introduce the discrete random sequence Zn with
the finite state space V = {0, 1, ..., K + 1}. Put Z1 = f

C+

C−
(Λ1) and for n ≥ 2:

Zn =


0, if Zn−1 = 0,

K + 1, if Zn−1 = K + 1,

f
C+

C−
(Λn), otherwise.

In this case, Zn is an inhomogeneous Markov chain with a finite state space
{0, ..., K + 1}, in which 0 and K + 1 are absorbing states. In order to simplify the
notation, let us renumerate the states space of Zn: V = {{0}, {K + 1}, {1}, ..., {K}}.

Introduce the notation:

P (n)(θi) =

(
I2 O2×K

Rn(θ
i) Qn(θ

i)

)
, i = 0, 1;P (n)(θi) = {p(n)kl (θ

i)}(K+2)×(K+2),

p
(n)
kl (θ

i) =

∫
Ak
n1(y,m

(i)
n−1, s

2
n−1)

∫
Al
n1(x, y + µ

(i)
n , σ2

n)dxdy∫
Ak
n1(y,m

(i)
n−1, s

2
n−1)dy

,

S(θi) = IK +
+∞∑
k=1

k+1∏
j=1

Qj(θ
i), B(θi) = R2(θ

i) +
+∞∑
k=2

k∏
j=1

Qj(θ
i)Rk+1(θ

i);

B(j)(·) is the jth-column of matrix B(·), π(θi) is the probability distribution of Z1, 1K

is the vector of size K with all components equal to 1, t(θi) = E(N |θi), i = 0, 1.
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Theorem 3. If infn tr(Γψ(n)ψ
T (n)) ≥ C,C = const > 0, then the characteristics of

the test (2) satisfy the following expansions:

t(θi) = 1 + (π(θi))
′
S(θi) · 1K +O(h), i = 0, 1;

α = (π(θ0))
′
B(2)(θ

0) + πK+1(θ
0) +O(h), β = (π(θ1))

′
B(1)(θ

1) + π0(θ
1) +O(h).

Proof. The approximations are derived from properties of inhomogeneous Markov
chains.

3 Numerical results

The probability model (1) was considered and the hypotheses (2) were tested by (3),
(4) with the following values of parameters:

m = 4, σ = 2, ψ(t) = (1, t/10, t2/100, t3/1000)T , θ0 = (1, 2, 3, 0.9)T , θ1 = (1, 1, 1, 1)T .

The infinite sum was limited to 1000 summands. The thresholds C−, C+ were calculated
according to Wald. Denote the sample estimate of a characteristic γ with Monte-Carlo
method by γ̂. The number of runs used in this method was 100 000. The results of
Corollary 2 are given in Table 1, where ti = E(N |θi), i = 0, 1.

α0 β0 α ≤ β ≤ α̂ β̂ E(0)(N) ≤ E(1)(N) ≤ t̂0 t̂1
0.1 0.1 0.0545 0.0545 0.0477 0.0480 12.674 12.674 9.428 9.434

0.05 0.05 0.0230 0.0230 0.0207 0.0216 13.685 13.685 10.275 10.266

0.01 0.01 0.0037 0.0037 0.0034 0.0036 15.359 15.359 11.532 11.538

Table 1. Upper bounds and Monte-Carlo estimates
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