OPTIMAL CHOICE OF ORDER STATISTICS UNDER CONFIDENCE REGION ESTIMATION IN CASE OF LARGE SAMPLES

A. ZAIGRAJEW¹, M. ALAMA-BUĆKO²

¹Nicolaus Copernicus University of Toruń

²University of Technology and Life Sciences of Bydgoszcz

¹Toruń and ²Bydgoszcz, POLAND

e-mail: ¹alzaig@mat.umk.pl

Abstract

Let $x = (x_1, \ldots, x_n)$ be a sample from a distribution $P_{\theta}, \theta = (\theta_1, \theta_2)$, where $\theta_1 \in R$ is a location parameter and $\theta_2 > 0$ is a scale parameter. To estimate θ strong two-dimensional confidence regions of given confidence level $\alpha \in (0,1)$ are considered. The quality of a Borel confidence set B(x) is characterized by the risk function defined as $R(\theta, B) = E_{\theta} \lambda_2(B(x))$, where $\lambda_2(B(x))$ is the Lebesgue measure of B(x). Among confidence regions we distinguish those having the minimal risk and call them optimal. The method for construction of an optimal confidence region is well-known (see, e.g., [1]) and is based on using a pivot. Let $x_{i:n}$ represents the *i*th order statistic of the sample x for i = 1, ..., n. To construct a pivot two statistics t_1 and t_2 are taken; both statistics depend on given $k \leq n$ order statistics, say $t_1(x) = \sum_{i=1}^k a_i x_{m_i:n}$, $t_2(x) = \sum_{i=1}^k b_i x_{m_i:n}$, where $1 \leq m_1 < m_2 < \ldots < m_k \leq n$. The case k = 2 was considered in [4]. If k > 2, then the problem of choosing $\{a_i, b_i\}$ is appeared. Here given $\{m_i\}$ the coefficients $\{a_i, b_i\}$ are taken in such a way that t_1 and t_2 are the asymptotically best linear estimators of θ_1 and θ_2 , respectively (see, e.g., [3]). The main goal of the paper is to make the best choice of order statistics, that is the best choice of $\{m_i\}$, to minimize the risk function, as $n \to \infty$, under the assumptions that $m_i/n \to p_i, i = 1, ..., k, 0 \le p_1 < p_2 < ... < p_k \le 1$. It turns out that such a problem is quite close to that considered in e.g. [2], Section 10.4. In the paper the problem of choice the value of k is also discussed. Several examples of location-scale families of distributions are presented.

References

- [1] Alama-Bućko M., Nagaev A.V., Zaigraev A. (2006). Asymptotic analysis of minimum volume confidence regions for location-scale families. *Applicationes Mathematicae (Warszawa)*. Vol. **33**, pp. 1-20.
- [2] David H.A., Nagaraja H.N. (2003). Order Statistics. Wiley, New York.
- [3] Masoom Ali M., Umbach D. (1998). Optimal linear inference using selected order statistics in location-scale models. In: *Handbook of Statistics*. Vol. **17**, pp. 183-213. North-Holland, Amsterdam.
- [4] Zaigraev A., Alama-Bućko M. (2013). On optimal choice of order statistics in large samples for the construction of confidence regions for the location and scale. *Metrika*. Vol. **76**, pp. 577-593.