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Abstract

Performance of the informational correlation coefficient (Linfoot, 1957) is ex-
perimentally studied. To reduce the bias of estimation, a symmetric version
of this correlation measure is proposed. This modified informational correlation
coefficient outperforms Linfoot’s correlation measure at the bivariate normal dis-
tribution on large samples.

1 Introduction

Pearson’s correlation coefficient is a well-defined measure of the linear dependence
between continuous random variables X and Y . This partially refers to closely related
to it rank measures as the quadrant, Spearman and Kendall correlation coefficients.
However, if one is interested either in processing discrete data or in revealing the
possible nonlinear relationship between random variables, then difficulties may arise
both in the implementation of those classical measures as well as in their interpretation.

In the literature, several proposals were made to solve these problems, for instance,
Gebelein’s (1941), Sarmanov’s (1958) correlation coefficients, and the distance correla-
tion coefficient of Szekely (2007).

In what follows, we focus on the informational measures of association between
random variables [7]. Joe’s dependence measure [4] exploits the concept of the relative
entropy that measures the similarity of two random variables with the distributions
p(x) and q(x) in the discrete case

D(p||q) =
∑
x

p(x) log
p(x)

q(x)
.

Silvey [8] uses the measure of dependence between two random variables defined by
the ratio of their joint density and the product of their marginal densities φ(x, y) =
p(x, y)/[p(x)p(y)]. The introduced measure is defined as follows: ∆ = E[d(x)], where
d(x) =

∫
y:φ(x,y)>1

[
p(y|x)− p(y)

]
dy. Thus, it can be rewritten as

∆ =

∫ ∫
(x,y):φ(x,y)>1

[
p(x, y)− p(x)p(y)

]
dxdy.

58



Granger [2] introduces another measure of dependence

Sp =
1

2

∫ ∫ [
p(x, y)1/2 − [p(x)p(y)]1/2

]2
dxdy.

Joe’s measure of dependence is not symmetric, and Silvey’s and Granger’s measures are
hard to compute. Mutual information (I(X, Y )) for any pair of discrete and continuous
random variables X and Y is defined as follows

I(X,Y ) =
∑
x,y

p(x, y) log
p(x, y)

p(x)p(y)
, I(X, Y ) =

∫ ∫
f(x, y) log

f(x, y)

f(x)f(y)
dxdy .

The informational correlation coefficient (ICC), firstly introduced by Linfoot [6],
is defined as follows

ρICC(X, Y ) =
√

1− e−2I(X,Y ) . (1)

Note that ICC is equal to the classical Pearson’s correlation coefficient at the bivariate
normal distribution: ρICC(X, Y ) = ρ.

2 Problem Setting

In spite of the fact that ICC was introduced more than 60 years ago, its properties as a
statistical measure of correlation have not yet been studied; it was not checked how well
this measure estimates the correlation coefficient based on the sample of a given size.
We are going to experimentally examine the following statistical properties of ICC: (i)
unbiasedness, (ii) consistency, (iii) Monte Carlo performance on small (N ≤ 20) and
large samples, and (iv) robustness. Moreover, in order to improve the performance of
ICC, namely, to reduce its bias, we propose and study a modified symmetric version
of ICC denoted as MICC.

3 Monte Carlo Experiment

3.1 Description of the computational algorithm

All numerical experiments are performed using R language, especially its “entropy”
library. The first problem is how to compute mutual information, which is used in (1).
This is solved by applying a shrink-algorithm [3].

There exist several different algorithms of computing I(X,Y ); in our work, we
choose the most precise one, not the fastest (for comparative analysis, see [3]). All
experiments are performed at the standard bivariate normal distribution with density
f(x, y) = N(x, y; 0, 0, 1.1, ρ).

The general algorithm can be described as follows:

1. Generate a sample of the fixed size: N = 20, 60, 100, 1000, 10000.

2. Extract x- and y-components from the sample, which are dependent random
variables with the correlation coefficient ρ.
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3. Construct the table of frequencies–the discrete analog of the joint distribution–we
take a rectangle [xmin, xmax] × [ymin, ymax] on plane and divide it into nx × ny

“bins” of equal size. Thus, the table of dimension nx, ny is built, each element
of which is equal to the number of points in the corresponding bin.

4. Mutual information I(X, Y ) and ICC are computed using this table of frequen-
cies.

This sequence is repeated 1000 times, allowing us to compute Monte Carlo estimates
of the mean and variance of the correlation coefficient ρ: computations are performed
for ρ = 0, 0.1, 0.2, . . . , 0.9, 1; the number of bins is taken equal to 400. Typical results
are exhibited in Fig. 1.

Figure 1: Monte-Carlo Biases of ICC

3.2 Monte Carlo results for ICC

1. From Fig. 1 it follows that estimation biases are considerably big (on small sam-
ples, they can even be greater than 0.5. Relatively small biases are observed only
on large samples N = 1000 andN = 10 000.

2. Satisfactory performance is observed in the case of a strong correlation—biases
decrease with the growth of the sample size.

3. We may also add that the coefficient of variance is less than 0.2 for all examined
combinations of (ρ,N).

4. A remark on the choice of the number of bins. The shrink-algorithm takes the
table of frequencies as an input. It appeared that the algorithm performance
depends on the relation N/K2, where K is the linear dimension of the table.
We observed that results are almost independent of the changes of K, as they
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depend only on the coefficient B = N/K2. For ρ = 0.5, the value B = 7 is
optimal. Given a data sample, we can choose an appropriate value of K, which
is a variable in our algorithm.

4 Main Result: A Symmetric Modification of ICC

Mutual entropy, also known as the Kullback-Leibler distance, has a serious disadvan-
tage — it is not symmetric, i.e., DKL(p||q) ̸= DKL(q||p). Thus, the Kullback-Leibler
divergence is used [5]:

Div(p||q) = DKL(p||q) +DKL(q||p). (2)

Analogously, a symmetric version of mutual information can be introduced

J(x, y) = I(x, y) + I∗(x, y)

=

∫ ∫
f(x, y) log

f(x, y)

f(x)f(y)
dxdy +

∫ ∫
f(x)f(y) log

f(x)f(y)

f(x, y)
dxdy .

Our idea is to repeat Linfoot’s derivation of formula (1), replacing the mutual infor-
mation I(X,Y ) with its symmetric version J(X, Y ). In this case, the following result
holds.

Theorem 1. A modified symmetric analog of the Linfoot’s informational correlation
coefficient (1) called as the modified informational correlation coefficient (MICC) is
given by:

ρMICC =

√
1− 2

W (2e2(J+1))
, (3)

where W (x) is the Lambert function [1], inverse w.r.t. xex. In particular, ρMICC = ρ
at the standard bivariate normal distribution.

The results of comparison of these two correlation measures are exhibited in Fig. 2–
Fig. 4: from them it follows that MICC outperforms ICC on all examined combina-
tions of sample sizes and correlation coefficients. The observed improvement is more
considerable on small samples and low values of the correlation coefficient — just in
the most difficult cases for ICC.

5 Conclusions

1. The statistical performance of the Linfoot’s informational correlation coefficient
is studied: considerable biases of estimation are observed.

2. To reduce the biases of ICC, a modified symmetric version of it, namely MICC,
is proposed, which proved to provide much lesser estimation biases as compared
to the original one.

3. The proposed modified informational correlation coefficient MICC is recom-
mended for processing Big Data.
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Figure 2: Monte-Carlo Biases of ICC and MICC at ρ = 0

Figure 3: Monte-Carlo Biases of ICC and MICC at ρ = 0.5
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Figure 4: Monte-Carlo Biases of ICC and MICC at ρ = 0.9
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