TWO-SIDED INEQUALITIES FOR THE AVERAGE NUMBER OF ELEMENTS IN THE UNION OF IMAGES OF FINITE SET UNDER ITERATIONS OF RANDOM EQUIPROBABLE MAPPINGS

A. A. Serov^{1}, A. M. Zubkov ${ }^{2}$
Steklov Mathematical Institute, Russian Academy of Sciences
Moscow, RUSSIA
e-mail: ${ }^{1}$ serov@mi.ras.ru, ${ }^{2}$ zubkov@mi.ras.ru

Abstract

Let \mathcal{N} be a set of N elements and F_{1}, F_{2}, \ldots be a sequence of random independent equiprobable mappings $\mathcal{N} \rightarrow \mathcal{N}$. For a subset $S_{0} \subset \mathcal{N},\left|S_{0}\right|=n$, we consider a sequence of its images $S_{k}=F_{k}\left(\ldots F_{2}\left(F_{1}\left(S_{0}\right)\right) \ldots\right), k=1,2 \ldots$, and a sequence of their unions $\Psi_{k}=S_{1} \cup \ldots \cup S_{k}, k=1,2 \ldots$ An approach to the exact computation of distribution of $\left|S_{k}\right|$ and $\left|\Psi_{k}\right|$ for moderate values of N is described. Two-sided inequalities for $\mathbf{M}\left|S_{k}\right|$ and $\mathbf{M}\left|\Psi_{k}\right|$ such that upper bound are asymptotically equivalent to lower ones for $N, n, k \rightarrow \infty, n k=o(N)$ are derived. The results are of interest for the analysis of time-memory tradeoff algorithms.

This work was supported by RFBR, grant 14-01-00318.

1 Introduction

One of the well-known time-consuming task is the search for solution of the equation

$$
\begin{equation*}
G(x)=a, \tag{1}
\end{equation*}
$$

where G be a mapping of the finite set $\mathcal{N}=\{1, \ldots, N\}$ to itself such that the complexity of any known method to compute the value $G^{-1}(a)$ is comparable with exhaustive search over the entire set \mathcal{N}. The trivial method of searching the solution of the equation (1) is the sequential computation of values $G(x)$ for all $x \in \mathcal{N}$ until the solution of (1) will be found. The implementation of such method requires a memory of slowly growing size for $N \rightarrow \infty$ (necessary to calculate a value of the function G for any $x \in \mathcal{N}$), but the time (number of operations) needed this method has the order $O(N)$.
M. E. Hellman [2] proposed the universal (independent of the type of function G) method for searching the solutions of the equation (1), permitting (after the preliminary stage of the complexity $O(N)$) to find the solution of equation (1) with a high probability for a time in order less than $O(N)$ by means of tables having volume less than $O(N)$. This approach has been called the time-memory tradeoff.

We consider a simplified mathematical model of the "rainbow" table construction (this model corresponds to the version of the time-memory tradeoff method that has
been proposed in [6]). The model is as follows: an initial subset $S_{0} \subset \mathcal{N},\left|S_{0}\right|=n$, is chosen and its images

$$
S_{1}=F_{1}\left(S_{0}\right), S_{2}=F_{2}\left(F_{1}\left(S_{0}\right)\right), \ldots, S_{t}=F_{t}\left(F_{t-1}\left(\ldots\left(F_{1}\left(S_{0}\right)\right) \ldots\right)\right)
$$

are calculated, where F_{1}, \ldots, F_{t} are independent random mappings of the set \mathcal{N} to itself having uniform distribution on the set $\Sigma_{N},\left|\Sigma_{N}\right|=N^{N}$, of all such mappings.

We propose the method to compute distributions of random variables $\varphi_{k}=\left|S_{k}\right|$ and $\zeta_{t}=\left|S_{1} \cup S_{2} \cup \ldots \cup S_{t}\right|$ by means of Markov chains, applicable for moderate values of N, and obtain two-sided estimates for the expectation of these random variables and for the probabilities that an element $x \in \mathcal{N}$, independent of the iterated mappings F_{1}, F_{2}, \ldots, belongs to the set S_{k} or to the set $S_{1} \cup S_{2} \cup \ldots \cup S_{t}$. Upper and lower bounds are asymptotically equivalent for $N, n, t \rightarrow \infty$, if $n t=o(N)$. These results may be used to optimize the methods of the time-memory tradeoff.

2 Basic results

Let, as before, F_{1}, F_{2}, \ldots be independent random mappings of the set $\mathcal{N}=\{1, \ldots, N\}$ to itself, $S_{0} \subset \mathcal{N},\left|S_{0}\right|=n, S_{k}=F_{k}\left(S_{k-1}\right), \Psi_{k}=\cup_{j=1}^{k} S_{j}, k \geqslant 1$. Let $\varphi_{0}=\left|S_{0}\right|$, $\zeta_{0}=0, \varphi_{k}=\left|S_{k}\right|, \zeta_{k}=\left|\Psi_{k}\right|, k \geqslant 1$. Since the mappings F_{1}, F_{2}, \ldots are independent and identically distributed, the sequences $\left\{\varphi_{k}\right\}_{k \geqslant 0}$ and $\left\{\zeta_{k}\right\}_{k \geqslant 0}$ form the Markov chains.
Assertion 1. The transition probability matrix of the Markov chain $\left\{\varphi_{k}\right\}_{k \geqslant 0}$ has the form

$$
\begin{gathered}
P=\left\|p_{i, j}\right\|_{i, j=1}^{N}, \\
p_{i, j}= \begin{cases}\binom{N}{j}\left(\frac{j}{N}\right)^{i} \sum_{m=0}^{j}(-1)^{m}\binom{j}{m}\left(1-\frac{m}{j}\right)^{i}, & 1 \leqslant j \leqslant i \leqslant N \\
0, & j>i .\end{cases}
\end{gathered}
$$

The transition probability matrix of the Markov chain $\left\{\left(\varphi_{k}, \zeta_{k}\right)\right\}_{k \geqslant 0}$ has the form

$$
\begin{gathered}
Q=\left\|q_{(i, r),(j, s)}\right\|_{i, j, r, s=1}^{N}, \\
q_{(i, r),(j, s)}=\left\{\begin{array}{c}
p_{i, j} \frac{\left.\begin{array}{c}
N-r \\
s-r
\end{array}\right)\binom{r}{j-s+r}}{\binom{N}{j}}=\binom{N-r}{s-r}\binom{r}{j-s+r}\left(\frac{j}{N}\right)^{i} \sum_{m=0}^{j}(-1)^{m}\binom{j}{m}\left(1-\frac{m}{j}\right)^{i}, \\
\text { if } 1 \leqslant j \leqslant i \leqslant N, 1 \leqslant r \leqslant s \leqslant \min \{N, r+j\}, \\
0 \quad \text { otherwise. }
\end{array}\right.
\end{gathered}
$$

The transition probabilities of the Markov chain $\left\{\varphi_{k}\right\}_{k \geqslant 0}$ for k steps form the matrix $P^{(k)}=\left\|p_{(i, j)}^{(k)}\right\|_{i, j=1}^{N}=P^{k}$. Thus the collections of numbers $\left\{p_{(n, j)}^{(k)}=\mathbf{P}\left\{\varphi_{k}=j \mid \varphi_{0}=\right.\right.$ $n\}, j=1, \ldots, N\}$ define the distributions of φ_{k} that allows to find the numerical values of the distribution characteristics of φ_{k} for the moderate values of N.

The two-sided estimates of $\mathbf{P}\left\{x \in S_{k} \mid \varphi_{0}=n\right\}, \mathbf{P}\left\{x \in \Psi_{k} \mid \varphi_{0}=n\right\}$ and the first moments of the random variables φ_{k}, ζ_{k} are contained in the following Theorem.

Theorem 1. Let F_{1}, F_{2}, \ldots be the independent equiprobable mappings of the set $\mathcal{N}=$ $\{1, \ldots, N\}$ to itself, $S_{0} \subseteq \mathcal{N},\left|S_{0}\right|=n, S_{k}=F_{k}\left(\ldots\left(F_{1}\left(S_{0}\right)\right) \ldots\right), k \geqslant 1$. For any element $x \in \mathcal{N}$, which does not depend on F_{1}, F_{2}, \ldots, for all $1 \leqslant k, n \leqslant N$ we have

$$
\begin{gather*}
\frac{n}{N}-C_{n}^{2} \frac{k}{N^{2}} \leqslant \mathbf{P}\left\{x \in S_{k} \mid \varphi_{0}=n\right\}<\frac{n}{N}-C_{n}^{2} \frac{k}{N^{2}}+\frac{n^{3} k^{2}}{4 N^{3}}, \tag{2}\\
\frac{n t}{N}-C_{t+1}^{2} \frac{3 n^{2}}{2 N^{2}}<\mathbf{P}\left\{x \in \Psi_{t} \mid \varphi_{0}=n\right\}<\frac{n t}{N}-C_{n}^{2} C_{t+1}^{2} \frac{1}{N^{2}}+\frac{n^{3}(t+1)^{3}}{12 N^{3}} .
\end{gather*}
$$

The following inequalities are also valid:

$$
\begin{gather*}
n-C_{n}^{2} \frac{k}{N} \leqslant \mathbf{M}\left\{\varphi_{k} \mid \varphi_{0}=n\right\}<n-C_{n}^{2} \frac{k}{N}+\frac{n^{3} k^{2}}{4 N^{2}} \tag{3}\\
n t-C_{t+1}^{2} \frac{3 n^{2}}{2 N}<\mathbf{M}\left\{\zeta_{t} \mid \varphi_{0}=n\right\}<n t-C_{n}^{2} C_{t+1}^{2} \frac{1}{N}+\frac{n^{3}(t+1)^{3}}{12 N^{2}} \\
\mathbf{D}\left\{\varphi_{k} \mid \varphi_{0}=n\right\}<\frac{k n^{3}}{N}\left(1+\frac{(n+2) k}{4 n N}\right) \tag{4}
\end{gather*}
$$

References

[1] Harris B. (1960). Probability distributions related to random mappings. Ann. Math. Statist. Vol. 31, No. 2, pp. 1045-1062.
[2] Hellman M.E. (1980). A cryptanalytic time-memory trade-off. IEEE Trans. Inf. Theory. Vol. 26, pp. 401-406.
[3] Flajolet P., Odlyzko A.M. (1990). Random Mapping Statistics Advances in Cryptology - Proc. Eurocrypt'89, J-J. Quisquater Ed., Lect. Notes Comp. Sci. Vol. 434, pp. 329-354.
[4] Kolchin V.F., Sevastyanov B.A., Chistyakov V.P. (1978). Random allocations. Scripta Series in Math. V. H. Winston \& Sons, Washington, pp. 262.
[5] Kolchin V.F. (1986). Random mappings. Trans. Ser. in Math. and Eng., Optimization Software Inc. Publications Division, New York, pp. 207.
[6] Oechslin P. (2003). Making a faster cryptanalytic time-memory trade-off. Lect. Notes Comput. Sci. Vol. 2729, pp. 617-630.
[7] Zubkov A.M., Serov A.A. (2014). Images of subset of finite set under iterations of random mappings. Discrete Math. Appl. Vol. 2015, No. 3, pp. 179-185.

