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Abstract

Let N be a set of N elements and F1, F2, . . . be a sequence of random in-
dependent equiprobable mappings N → N . For a subset S0 ⊂ N , |S0| = n,
we consider a sequence of its images Sk = Fk(. . . F2(F1(S0)) . . .), k = 1, 2 . . .,
and a sequence of their unions Ψk = S1 ∪ . . . ∪ Sk, k = 1, 2 . . . An approach to
the exact computation of distribution of |Sk| and |Ψk| for moderate values of
N is described. Two-sided inequalities for M|Sk| and M|Ψk| such that upper
bound are asymptotically equivalent to lower ones for N,n, k → ∞, nk = o(N)
are derived. The results are of interest for the analysis of time-memory tradeoff
algorithms.

This work was supported by RFBR, grant 14-01-00318.

1 Introduction

One of the well-known time-consuming task is the search for solution of the equation

G(x) = a, (1)

where G be a mapping of the finite set N = {1, . . . , N} to itself such that the complex-
ity of any known method to compute the value G−1(a) is comparable with exhaustive
search over the entire set N . The trivial method of searching the solution of the equa-
tion (1) is the sequential computation of values G(x) for all x ∈ N until the solution
of (1) will be found. The implementation of such method requires a memory of slowly
growing size for N → ∞ (necessary to calculate a value of the function G for any
x ∈ N ), but the time (number of operations) needed this method has the order O(N).

M.E.Hellman [2] proposed the universal (independent of the type of function G)
method for searching the solutions of the equation (1), permitting (after the prelim-
inary stage of the complexity O(N)) to find the solution of equation (1) with a high
probability for a time in order less than O(N) by means of tables having volume less
than O(N). This approach has been called the time-memory tradeoff.

We consider a simplified mathematical model of the “rainbow” table construction
(this model corresponds to the version of the time-memory tradeoff method that has
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been proposed in [6]). The model is as follows: an initial subset S0 ⊂ N , |S0| = n, is
chosen and its images

S1 = F1(S0), S2 = F2(F1(S0)), . . . , St = Ft(Ft−1(. . . (F1(S0)) . . .))

are calculated, where F1, . . . , Ft are independent random mappings of the set N to
itself having uniform distribution on the set ΣN , |ΣN | = NN , of all such mappings.

We propose the method to compute distributions of random variables φk = |Sk|
and ζt = |S1∪S2∪ . . .∪St| by means of Markov chains, applicable for moderate values
of N , and obtain two-sided estimates for the expectation of these random variables
and for the probabilities that an element x ∈ N , independent of the iterated mappings
F1, F2, . . ., belongs to the set Sk or to the set S1∪S2∪ . . .∪St. Upper and lower bounds
are asymptotically equivalent for N,n, t→ ∞, if nt = o(N). These results may be used
to optimize the methods of the time-memory tradeoff.

2 Basic results

Let, as before, F1, F2, . . . be independent random mappings of the set N = {1, . . . , N}
to itself, S0 ⊂ N , |S0| = n, Sk = Fk(Sk−1), Ψk = ∪k

j=1Sj, k > 1. Let φ0 = |S0|,
ζ0 = 0, φk = |Sk|, ζk = |Ψk|, k > 1. Since the mappings F1, F2, . . . are independent
and identically distributed, the sequences {φk}k>0 and {ζk}k>0 form the Markov chains.

Assertion 1. The transition probability matrix of the Markov chain {φk}k>0 has the
form

P = ∥pi,j∥Ni,j=1,

pi,j =
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0, j > i.

The transition probability matrix of the Markov chain {(φk, ζk)}k>0 has the form

Q = ∥q(i,r),(j,s)∥Ni,j,r,s=1,

q(i,r),(j,s) =


pi,j
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if 1 6 j 6 i 6 N, 1 6 r 6 s 6 min{N, r + j},
0 otherwise.

The transition probabilities of the Markov chain {φk}k>0 for k steps form the matrix

P (k) = ∥p(k)(i,j)∥Ni,j=1 = P k. Thus the collections of numbers {p(k)(n,j) = P{φk = j |φ0 =

n}, j = 1, . . . , N} define the distributions of φk that allows to find the numerical values
of the distribution characteristics of φk for the moderate values of N .

The two-sided estimates of P{x ∈ Sk |φ0 = n}, P{x ∈ Ψk |φ0 = n} and the first
moments of the random variables φk, ζk are contained in the following Theorem.
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Theorem 1. Let F1, F2, . . . be the independent equiprobable mappings of the set N =
{1, . . . , N} to itself, S0 ⊆ N , |S0| = n,Sk = Fk(. . . (F1(S0)) . . .), k > 1. For any
element x ∈ N , which does not depend on F1, F2, . . ., for all 1 6 k, n 6 N we have
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(2)

The following inequalities are also valid:
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