
MIXED POWER VARIATIONS WITH
STATISTICAL APPLICATIONS

Yu.S. Mishura
Taras Shevchenko National University of Kyiv

Kyiv, UKRAINE
e-mail: myus@univ.kiev.ua

Abstract

We obtain results on both weak and almost sure asymptotic behavior of power
variations of a linear combination of independent Wiener process and fractional
Brownian motion. These results are used to construct strongly consistent pa-
rameter estimators in mixed models.

1 Introduction

These results are common with G. Shevchenko and M. Dozzi.
A fractional Brownian motion (fBm) is frequently used to model short- and long-

range dependence. By definition, an fBm with Hurst parameter H ∈ (0, 1) is a centered
Gaussian process {BH

t , t ≥ 0} with the covariance function

E[BH
t B

H
s ] =

1

2

(
t2H + s2H − |t− s|2H

)
.

For H > 1/2, an fBm has a property of long-range dependence; for H < 1/2, it is short-
range dependent and, in fact, is counterpersistent, i.e. its increments are negatively
correlated. For H = 1/2, an fBm is a standard Wiener process.

Two important properties of an fBm are the stationarity of increments and self-
similarity. However, these properties restrict applications of an fBm. So, let us consider
some generalizations. A simplest approach is to consider a linear combination

Xt =
N∑
k=1

akB
Hk
t , t ≥ 0, (1)

of independent fBms BHk with different Hurst parameters H1 < H2 < · · · < HN .
We consider a particular version of the process (1) with N = 2 and one of the Hurst

parameters equal to 1/2. In other words, we consider a process

MH
t = aBH

t + bWt, t ≥ 0 (2)

where a and b are some non-zero coefficients. Such process is frequently called a
mixed fractional Brownian motion. Its applications were considered in many papers,
see [2, 7, 10, 11].

There are only few papers concerned with parameter estimation in the mixed model,
but they address questions different from the one we are interested in. In particu-
lar, [6, 9] address the estimation of drift parameter in a model with mixed fractional

38



Brownian motion. In [1], the authors construct several estimators based on discrete
variation, so their research is quite close to ours, but they also work in the low-frequency
setting, which is essentially different from the high-frequency setting we consider. In
both settings, the first order difference of the observed series is a stationary sequence.
However, in the low-frequency setting the covariance does not depend on the number of
observations, while in the high-frequency one, the covariance structure is very different.
As it was mentioned above, for H > 1/2, in a small scale the mixed fractional Brownian
motion behaves like Wiener process. Thus, the increments of Wiener process become
more and more dominating as the partition becomes finer, which makes estimation of
the Hurst parameter much harder in the case where H > 1/2.

As it was already mentioned, our main aim is the estimation of the parameters of
the process (2) based on its single observation on a uniform partition of a fixed interval.
To this end, we use power variations of this process.

In the future we plan to consider more advanced techniques as those developed
in [1, 4, 5, 8] to construct more efficient estimators.

2 Asymptotic behavior of mixed power variations

Let W = {Wt, t ≥ 0} be a standard Wiener process and BH = {BH
t , t ≥ 0} be

an independent of W fBm with Hurst parameter H ∈ (0, 1) defined on a complete
probability space (Ω,F , P ).

For a function X : [0, 1] → R and integers n ≥ 1, i = 0, 1, . . . , n − 1 we denote
∆n

iX = X(i+1)/n − Xi/n. In this section we will study the asymptotic behavior as
n→ ∞ of the following mixed power variations

n−1∑
i=0

(∆n
iW )p

(
∆n

i B
H
)r
,

where p ≥ 0, r ≥ 0 are fixed integer numbers. Since ∆n
iW and ∆n

i B
H are centered

Gaussian with variances n−1/2 and n−H respectively, we get that

E
[
(∆n

iW )p
(
∆n

i B
H
)r]

= n−rH−p/2µpµr,

where for an integer m ≥ 1

µm = E [N(0, 1)m] = (m− 1)!!1m is even

is the mth moment of the standard Gaussian law; (m − 1)!! = (m − 1)(m − 3) . . . is
the double factorial.

In view of this, we will study centered sums of the form

SH,p,r
n =

n−1∑
i=0

(
nrH+p/2 (∆n

iW )p
(
∆n

i B
H
)r − µpµr

)
.

We start with studying the almost sure behavior of SH,p,r
n . For brevity, the phrase

“almost surely” will be omitted throughout the article.
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Proposition 1. Let ε > 0 be arbitrary.
If r = 0, then SH,p,r

n = o(n1/2+ε), n→ ∞.
If p and r ≥ 2 are even, then

• for H ∈ (0, 3/4] SH,p,r
n = o(n1/2+ε), n→ ∞.

• for H ∈ (3/4, 1) SH,p,r
n = o(n2H−1+ε), n→ ∞.

If p is odd and r ≥ 1 is arbitrary, then for any H ∈ (0, 1) SH,p,r
n = o(n1/2+ε),

n→ ∞.
If p is even and r is odd, then

• for H ∈ (0, 1/2] SH,p,r
n = o(n1/2+ε), n→ ∞.

• for H ∈ (1/2, 1) SH,p,r
n = o(nH+ε), n→ ∞.

In particular, for any H ∈ (0, 1) the following version of the ergodic theorem takes
place: SH,p,r

n → 0, n→ ∞.

The following theorem summarizes the weak limit behaviour of SH,p,r
n . We remark

that some (but not all) of the results can be obtained either from the limit theorems
for stationary Gaussian sequences of vectors, see e.g. [3] or from the limit theorems
for arrays of Gaussian vectors, see [4]. However, we believe that our approach (using
one-dimensional limit theorems) is more accessible and leads quicker to the desired
results.

Denote

ρH(m) = E
[
BH

1 (BH
m+1 −BH

m)
]
=

1

2

(
|m+ 1|2H + |m− 1|2H − 2m2H

)
the covariance of the so-called fractional Gaussian noise {BH

k+1−BH
k }. It is easy to see

that ρH(m) ∼ H(2H − 1)m2H−2, m→ ∞.

Theorem 1. If p and r are even, r ≥ 2, then

• for H ∈ (0, 3/4)

n−1/2SH,p,r
n ⇒ N(0, σ2

H,rµ
2
p + σ2

p,r), n→ ∞, (3)

where

σ2
H,r =

r/2∑
l=1

(l!)2

(2l)!((r − 2l)!!)2

∞∑
m=−∞

ρH(m)2l, σ2
p,r = µ2r

(
µ2p − µ2

p

)
;

• for H = 3/4

S
3/4,p,r
n√
n log n

⇒ N(0, σ2
3/4,rµ

2
p + σ2

p,r), n→ ∞, (4)

where σ3/4,r = 3r(r − 1)/4;
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• for H ∈ (3/4, 1)
n1−2HSH,p,r

n ⇒ ζH,p,r, n→ ∞, (5)

where ζH,p,r is a special “Rosenblatt” random variable.

If p is odd and r ≥ 1 is arbitrary, then for any H ∈ (0, 1)

n−1/2SH,p,r
n ⇒ N(0, µ2pµ2r). (6)

If p is even and r is odd, then

• for H ∈ (0, 1/2]

n−1/2SH,p,r
n ⇒ N(0, σ2

H,rµ
2
p + σ2

p,r), n→ ∞, (7)

where σH,1 = 0,

σ2
H,r =

(r−1)/2∑
l=1

(r!)2

(2l + 1)!((r − 2l − 1)!!)2

∞∑
m=−∞

ρH(m)2l+1, r ≥ 3;

• for H ∈ (1/2, 1)
n−HSH,p,r

n ⇒ N(0, µ2
pµ

2
r+1), n→ ∞. (8)

Remark. For r = 0 we have the pure Wiener case, so for any H ∈ (0, 1)

n−1/2SH,p,r
n ⇒ N(0, µ2p − µ2

p), n→ ∞.

3 Statistical estimation in mixed model based on

quadratic variation

Now we turn to the question of parametric estimation in the mixed model

MH
t = aBH

t + bWt, t ∈ [0, T ], (9)

where a, b are non-zero numbers, which we assume to be positive, without loss of
generality. Our primary goal is to construct a strongly consistent estimator for the
Hurst parameter H, given a single observation of MH .

It is well-known (see [7]) that for H ∈ (3/4, 1) the measure induced by MH in
C[0, T ] is equivalent to that of bW . Therefore, the property of almost sure convergence
in this case is independent of H. Consequently, no strongly consistent estimator for
H ∈ (3/4, 1) based on a single observation of MH exists.

In this section we denote ∆n
iX = XT (i+1)/n −XTi/n and

V H,p,r
n =

n−1∑
i=0

(∆n
iW )p

(
∆n

i B
H
)r
.
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Consider the quadratic variation of MH , i.e.

V H,2
n :=

n−1∑
i=0

(
∆n

iM
H
)2

= a2V H,0,2
n + 2abV H,1,1

n + b2V H,2,0
n .

Note that V H,2
n depends only on the observed process but not on H. We use this

notation to specify the distribution. Namely, we will use it to refer to the limit behavior
of the quadratic variation for a specified value of the Hurst parameter H.

By Proposition 1, we have that V H,0,2
n ∼ T 2Hn1−2H , V H,2,0

n → T , V H,1,1
n = o(n1/2−H),

n → ∞. Therefore, the asymptotic behavior of V H,2
n depends on whether H < 1/2 or

not. Precisely, for H ∈ (0, 1/2),

V H,2
n ∼ a2T 2Hn1−2H , n→ ∞, (10)

so the quadratic variation behaves similarly to that of a scaled fBm.
For H ∈ (1/2, 1),

V H,2
n → b2T, n→ ∞, (11)

so the quadratic variation behaves similarly to that of a scaled Wiener process.
Let us consider the cases H < 1/2 and H > 1/2 individually in more detail.

3.1 H ∈ (0, 1/2)

We have seen above that this case is similar to the pure fBm case. Unsurprisingly, the
same estimators work, which is precisely stated below.

Theorem 2. For H ∈ (0, 1/2), the following statistics

Ĥk =
1

2

(
1− 1

k
log2 V

H,2
2k

)
and

H̃k =
1

2

(
log2

V H,2
2k−1

V H,2
2k

+ 1

)
are strongly consistent estimators of the Hurst parameter H.

Remark. At the first sight, there is no clear advantage of Ĥk or H̃k. But a careful
analysis shows that H̃k is better. Indeed, it is easy to see that

Ĥk = H − log2 a+H log2 T

k
+ o(k−1), k → ∞, (12)

while
H̃k = H +O(2k(2H−1)) + o(2k(−1/2+ε)), k → ∞. (13)

Now it is absolutely clear that H̃k performs much better (unless one hits the jackpot
by having aTH = 1).
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