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Abstract

The problem of implementation of the Poisson-Gaussian regression models in
empirical Bayesian estimation of the small probabilities is considered. A boot-
strap method using Monte-Carlo simulation is proposed. The method is applied
to real-world USA cancer data combined with some possible regression variables,
assuming they may have influence on the actual cancer data.

1 Introduction

Let us consider the problem of probability estimation of rare events in large populations
(e.g., probabilities of some disease, homicides, suicides, etc.). The respective number
of events depends on the population size and on the probability of a single event. Let
us assume that probability of a single event depends only on population and these
probabilities are the same in the same population. Moreover, assume that all events
in all populations are independent. Under such assumptions number of events in each
population will follow the Bernoulli distribution.

An event count refers to the number of times an event occurred in specific popula-
tion. The benchmark model for count data is the Poisson distribution.

The Poisson distribution is the simplest distribution for modeling count data. How-
ever, it has one obvious limitation: its variance is equal to its mean. In case of real
data we usually have so-called overdispersion: empirical variance is significantly bigger
than empirical mean. In this case we can add some independent mixing distribution
which increases variance of the combined distribution. By selecting parameters of the
mixing distribution we can adjust the mean and the variance of the combined distri-
bution to the empirical mean and the empirical variance of the real data. The simplest
model adds gamma distribution to the Poisson distribution. The resulting distribu-
tion is known as negative binomial distribution or Poisson-gamma distribution. This
distribution is more dispersed than the Poisson distribution. Obviously, negative bino-
mial distribution can accommodate overdispersion but not underdispersion. There are
many generalizations of the Poisson distributions (see, e.g., [2], [3], [6]).

Count data regression models have a widespread use (see, e.g., [2], [6]). The mean
parameter of the Poisson-gamma model is usually parametrized using exponential link
function of the regressors, in order to ensure that mean parameter is strictly greater
than zero. As an alternative to the Poisson-gamma distribution, we will consider
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Poisson-Gaussian distribution (see, e.g., [7], [8]). In this case the additional link func-
tion is not needed, and adding regression variables is very simple and clear. However,
the calculations using Poisson-Gaussian model are much more complicated, and we
need to use Hermite-Gauss numerical integration formulae (see, e.g. [1]).

2 Mathematical models

Let observed number of events {Y;} = Y;, j = 1,..., K, be a sample of indepen-
dent random variables {Y,} with binomial distribution, respectively, with number of
experiments {V;} and success probabilities {\;}. Clearly, {E(Y;)} ={\;N,}.

An assumption is often made (see, e.g., [5], [8]) that random variables {Y;} have a
Poisson distribution with parameters, respectively, {\;N;}, i.e.

P{Yj:m}:h(??’% )\jN])7 mzo,lj...7 j:17--.,K,

where
m

h(m, z)=e"* m=0,1,..., 2> 0.

m!’

We will consider the mathematical model assuming that unknown probabilities {\;}
are independent identically distributed random variables with distribution function F
from the certain class of distribution functions F. Our problem is to get empirical Bayes
estimates (see, e.g., [4]) of unknown probabilities {\;} from the observed number of
events {Y;}, assuming that F' € F.

Poisson-gamma model. Given population sizes {N,}, let random variables {Y}
have a Poisson distribution with parameters, respectively, {\;N;}, where {);} are
independent identically distributed gamma random variables with shape parameter
v > 0 and scale parameter a > 0, i.e. the distribution function F' has the distribution

density
a-(a-z)r!

Then E(\;) = v/a, and E(\; —E(\;))*> =v/a?, j=1,..., K. Given observed number
of events {Y;} and population sizes {N,}, Bayes estimates for {\;} are (see, e.g. [5])

e 0<r<oo.

Y; +v
Nj—l—a’

E(\ | Y, =) = j=1.. K (1)

Corresponding maximum likelihood function for parameters (v, «) is

r(, +v)
L(v,a) = Z (IHW +vin(a)—

Jj=1

—(Y; + ) In(N; + @) + Y, In N]). 2)

Empirical Bayes estimates {S\J} are obtained by maximizing (2) and replacing param-
eters (v, «) in (1) with obtained parameters (7, &).
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Poisson-Gaussian model. Alternatively, we will consider Bayes estimate {Xj},
which is obtained under assumption that unknown probabilities are i.i.d. r.v.’s such
that their logits o; = In(X\;/(1 = X)), j =1, 2, ... , K, are i.i.d. Gaussian r.v.’s with
mean j and variance 0% and corresponding distribution density ¢, ,2.

Poisson-Gaussian model with regression variables. Additionally, let us
introduce an auxiliary regression variables {Zj}(s), s = 1,..., M, assuming that
w(g) = po + ulZ](-l) + ,ugZJ(-Q) + -+ uMZJ(-M), j=1,2 ... K (for our purposes we
consider only simplified model without interactions of the regression variables). These
variables are considered non-random, so all formulae for Poisson-Gaussian model hold
also for Poisson-Gaussian model with regression variables.

In the case of both Poisson-Gaussian models conditional expectation of {\;} has
the following form:

[e.o]

B0V 1Y) =) = D7 ) o) [ et (Vi s ) el
R j=1... K,
where
D;(u(4),0%) = / h <Yja : Jivé_m) P2 () de,
h j=1..., K.

3 Implementation of the Poisson-(zaussian regres-
sion model

To demonstrate the implementation of the Poisson-Gaussian regression model the main
intention of data selection was to select freely available datasets, preferably of certain
relatively large population, from the trusted databases. We have selected real data
from the database of the USA National Cancer Institute, years 2011 and 2012, number
of administrative territories (states) K = 50, 23 datasets in total. Also we have used
population data by administrative territories from the United States Census Bureau.

As a basis for the regression variables we have used corresponding real data by ad-
ministrative territories (states) from the Health Indicators Warehouse of the USA Cen-
ter for Disease Control and Prevention. We have analysed three of possible regression
variables, assuming they may have influence on the actual cancer data: (1) “Depression
Medicare beneficiaries”, (2) “High cholesterol Medicare beneficiaries”, (3) “Toxic chem-
icals (pounds)”.

For each dataset we have performed Monte-Carlo computer simulation of (typi-
cally) 100 independent realizations using both Poisson-gamma and Poisson-Gaussian
models with corresponding parameters estimated from the real data (assuming that
there are no regression). At the next stage we estimated (using maximum likelihood
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method) Poisson-Gaussian model parameters without regression variables, and, alter-
natively, Poisson-Gaussian model parameters with selected regression variables. In the
process, corresponding values of the maximum likelihood function were obtained. This
procedure was applied to the real data, and to the 100 simulated realizations (either
Poisson-gamma model realizations or Poisson-Gaussian model realizations).

The key point of this method is comparing difference of values of maximum like-
lihood function (for model with regression variables and for model without regression
variables) for the real data with analogous differences for simulated realizations. Be-
cause simulated realizations have no influence of regression variables, they only have
small random differences of values of maximum likelihood function, which main char-
acteristics can be easily calculated. As a simple method, we can apply 3o rule to detect
presence of the regression variables.

As expected, the simulation results did not show significant difference of simulation
using Poisson-gamma and Poisson-Gaussian models. Implementing the simple 3o rule,
we have found that for datasets 4, 9, 10, 16, 18 it is recommended to use regression
variable “High cholesterol Medicare beneficiaries” for empirical Bayes estimation. For
datasets 2, 9, 10, 16 it is recommended to use regression variable “Depression Medi-
care beneficiaries” for empirical Bayes estimation. As for regression variable “Toxic
chemicals (pounds)” (combined with population size or with area size), we did not find
influence of this variable.
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