Белорусский государственный университет

«<u>10</u>»<u>июня</u> 2016 г.

Регистрационный № УД -2121/уч.

Иммуноферментный анализ

Учебная программа учреждения высшего образования по учебной дисциплине для специальности:

1-31 01 01 Биология (по направлениям) направления специальности 1-31 01 01-03 Биология (биотехнология)

Учебная программа составлена на основе ОСВО 1-31 01 01-2013 и учебного плана УВО № G31-131/уч. 2013 г.

составитель:

Игорь Викторович Семак, заведующий кафедрой биохимии Белорусского государственного университета, кандидат биологических наук, доцент

РЕКОМЕНДОВАНА К УТВЕРЖДЕНИЮ:

Кафедрой биохимии Белорусского государственного университета (протокол № 12 от 17 мая 2016 г.);

Учебно-методической комиссией биологического факультета Белорусского государственного университета (протокол № 10 от 25 мая 2016 г.)

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

Учебная дисциплина «Иммуноферментный анализ» относится к компоненту УВО цикла специальных дисциплин учебного плана направления специальности 1-31 01 01-03 Биология (биотехнология) и является одним из спецкурсов.

Иммуноферментный анализ (ИФА) является одним из наиболее активно развивающихся направлений иммунохимии, как в нашей стране, так и за рубежом. Полученные студентами знания могут быть использованы для успешного решения целого ряда биохимических, биотехнологических и фармакологических задач прикладного и фундаментального характера.

Теоретические положения лекционного курса развиваются и закрепляются на лабораторных занятиях, при выполнении которых студенты приобретают навыки подбора оптимальных условий протекания ферментативных реакций, изучения структуры и свойств антител и антигенов, знакомятся с методами ИФА.

Цель учебной дисциплины — дать представление об иммуноферментном анализе как методе исследования, научить получать реагенты для ИФА, разрабатывать схемы проведения ИФА и трактовать результаты ИФА.

В задачи учебной дисциплины входит освоение студентами основных принципов иммуноферментного анализа; закрепление теоретических положений лекционного курса на лабораторных занятиях.

Учебная программа составлена с учетом межпредметных связей и учебных программам по смежным дисциплинам «Введение в биотехнологию», «Иммобилизованные клетки и ферменты» и др.).

В результате изучения дисциплины обучаемый должен:

знать:

- структуру и свойства антигенов и антител;
- физико-химические закономерности взаимодействия антиген-антитело, методы определения и способы расчета аффинности антител;
- ферменты, используемые для ИФА и кинетические закономерности протекания ферментативных реакций;
 - способы получения реагентов для ИФА;
 - классификацию методов ИФА, их особенности и схемы проведения;
 - современные информационные технологии, используемые в ИФА;
 - новейшие достижения и перспективы развития ИФА.

уметь:

- получать реагенты для ИФА;
- разрабатывать схемы проведения ИФА;
- представлять и обрабатывать данные ИФА;
- пользоваться специализированными компьютерными базами данных и ресурсами Интернета.

владеть:

- базовой терминологией, применяющейся в ИФА;
- методологическими основами ИФА;

- технологиями, используемыми для создания наборов и проведения ИФА.

Изучение учебной дисциплины «Иммуноферментный анализ» должно обеспечить формирование у студента следующих компетенций:

- АК-1. Уметь применять базовые научно-теоретические знания для решения теоретических и практических задач.
 - АК-3. Владеть исследовательскими навыками.
 - АК-4. Уметь работать самостоятельно.
 - АК-6. Владеть междисциплинарным подходом при решении проблем.
- ПК-2. Осваивать новые модели, теории, методы исследования, участвовать в разработке новых методических подходов.
- ПК-3. Осуществлять поиск и анализ данных по изучаемой проблеме в научной литературе, составлять аналитические обзоры.
- ПК-4. Готовить научные статьи, сообщения, рефераты, доклады и материалы к презентациям.
- ПК-7. Осуществлять поиск и анализ данных по изучаемой проблеме в научно-технических и других информационных источниках.

В соответствии с учебным планом изучение учебной дисциплины осуществляется в 7 семестре. Программа рассчитана на 110 часов, в том числе 40 аудиторных часов, их них 26 — лекционных, 10 — лабораторных занятий, 4 часа — аудиторного контроля управляемой самостоятельной работы студентов.

Форма текущей аттестации по учебной дисциплине – экзамен.

СОДЕРЖАНИЕ УЧЕБНОГО МАТЕРИАЛА

1. ВВЕДЕНИЕ

Современный иммунохимический анализ. Общая характеристика иммуноферментного анализа; преимущества и недостатки фермент-зависимых меток. Области применения ИФА.

2. СТРУКТУРА И СВОЙСТВА АНТИГЕНОВ И АНТИТЕЛ

Антигены. Структурные основы антигенной специфичности белков, полисахаридов, нуклеиновых кислот. Гаптены. Использование гаптенов для изучения специфичности антигенных детерминант, работы К. Ландштейнера. Требования, предъявляемые к антигенам, использующимся в ИФА в качестве меченых препаратов и стандартов.

Антитела. Общая характеристика структуры молекул иммуноглобулинов. Первичная структура Н- и L-цепей иммуноглобулинов. Трехмерная структура иммуноглобулинов. Антигенсвязывающие центры антител. Характеристика классов иммуноглобулинов: IgG, IgA, IgM, IgE, IgD.

Специфичность и гетерогенность антител, перекрестная реактивность. Понятие аффинности и авидности антител.

3. ФИЗИКО-ХИМИЧЕСКИЕ ЗАКОНОМЕРНОСТИ ВЗАИМОДЕЙСТВИЯ АНТИГЕН-АНТИТЕЛО

Термодинамические И кинетические закономерности реакции взаимодействия антиген-антитело. Методы определения аффинности антител: равновестный диализ, фракционное осаждение, флуоресцентные методы. Способы расчета констант комплексообразования реакции антигенантитело: взаимодействие одной субпопуляции антител с моновалентным антигеном; взаимодействие одной субпопуляции антител с поливалентным антигеном; взаимодействие двух субпопуляций антител с моновалентным антигеном; взаимодействие поликлональной антисыворотки с антигеном.

4. ФЕРМЕНТНЫЕ МЕТКИ В ИММУНОАНАЛИЗЕ

Основные понятия и термины, используемые в энзимологии. Физикохимические и каталитические свойства ферментов. Кинетические закономерности протекания ферментативных реакций. Экспериментальные методы определения ферментативной активности. Критерии выбора ферментных меток. Характеристика ферментов, используемых в ИФА в качестве меток: пероксидаза хрена, глюкозооксидаза, щелочная фосфатаза, β-D-галактозидаза, глюкозо-6-фосфатдегидрогеназа, малатдегидрогеназа. Факторы, влияющие на активность ферментов при проведении ИФА.

5. ПОЛУЧЕНИЕ РЕАГЕНТОВ ДЛЯ ИФА

Получение антител. Иммуногенность антигенов. Антисыворотки как источники поликлональных антител. Иммунизация, факторы, влияющие на успех иммунизации: природа и доза иммуногена, использование адъюванта, вид взятых для иммунизации животных, способ иммунизации, порядок и время введения антигена и сбора антисыворотки. Хранение антисывороток. Тестирование антисывороток.

Моноклональные антишела. Получение гибридом. Использование моноклональных антител в иммуноанализе.

Выделение и очистка антител из различных источников: осаждение сульфатом аммония, хроматография, иммуноадсорбция.

Получение иммобилизованных антител и антигенов: носители, применяемые в ИФА; иммобилизация антител и антигенов; неспецифическое связывание с иммуносорбентом. Свойства иммобилизованных антител.

Получение коньюгатов: синтез коньюгатов гаптенов с носителями для получения антител; получение коньюгатов фермент-белок; получение коньюгатов гаптен-фермент; получение коньюгатов антигенов (антител) с субстратами.

6. МЕТОДЫ ИФА

Общая классификация методов ИФА: анализ типа 1 и анализ типа 2; конкурентные и неконкурентные, гетерогенные и гомогенные, твердофазные и гомогенно-гетерогенные методы анализа.

Гетерогенные методы ИФА антигенов и антител: методы, основанные на определении специфических иммунных комплексов (тип 1); конкурентные и неконкурентные методы, основанные на определении оставшихся свободными центров специфического связывания (тип 2). Методы гетерогенного ИФА, основанные на нековалентном способе введения ферментной метки. Твердофазный ИФА в проточных системах. Новые подходы в гетерогенном ИФА.

Гомогенные методы ИФА: методы анализа антигенов, основанные на использовании меченных ферментом антигенов; методы ИФА антигенов, основанные на использовании неферментных меток.

Люминесцентный иммуноанализ.

Направления и перспективы развития ИФА.

7. МЕТОДЫ ПРЕДСТАВЛЕНИЯ И ОБРАБОТКИ ЭКСПЕРИМЕНТАЛЬНЫХ ДАННЫХ

Анализ результатов определения антигена. Особенности анализа экспериментальных данных определения антител. Источники ошибок при проведении ИФА. Параметры, характеризующие ИФА: предел обнаружения, длительность, точность и специфичность.

УЧЕБНО-МЕТОДИЧЕСКАЯ КАРТА УЧЕБНОЙ ДИСЦИПЛИНЫ

ę,	Название раздела, темы	Количество аудиторных часов						ий
Номер раздела, темы		Лекции	Практические занятия	Семинарские занятия	Лабораторные занятия	Иное	Количество часов УСР	Форма контроля знаний
1	Введение	2						
2	Структура и свойства антигенов и антител	2			2			
3	Физико-химические закономерности взаимодействия антиген-антитело	2			2		2	Письменная контрольная работа
4	Ферментные метки в иммуноанализе	4						
5	Получение реагентов для ИФА	4			2			
6	Методы ИФА	8			2		2	Письменная контрольная работа
7	Методы представления и обработки экспериментальных данных	4			2			

ИНФОРМАЦИОННО-МЕТОДИЧЕСКАЯ ЧАСТЬ

Основная литература

- 1. Теория и практика иммуноферментного анализа / А.М. Егоров, А.П. Осипов, Б.Б. Дзантиев, Е.М. Гаврилова М.: Высшая школа. 1991.
- 2. Иммунология: В 3-х т. Т.1, 3. Пер. с англ. / Под ред. У. Пола. М.: Мир. 1989.
 - 3. Петров Р.В. Иммунология. Петров Р.В. М.: Высшая школа. 1993.
- 4. Иммуноферментный анализ / Под ред. Г.Г. Нго, Г.М. Ленкофф. М.: Мир. 1988.
 - 5. Иммунологические методы / Под ред. Г. Фримеля. М.: Медицина, 1987.
 - 6. Новые методы иммуноанализа / Под ред. У. Коллинза. М.: Мир. 1991.
 - 7. Антитела. Методы. В 2-х кн. / Под ред. Д. Кэтти. М.: Мир. 1991.

Дополнительная литература

- 1. ELISA: Theory and practice / Ed. by John R. Crowther. Humana Press Inc. 1995.
- 2. Antibodies. A Laboratory Manual / Ed. by E. Harlow, D. Lane. Cold Spring Harbor Laboratory. 1988.
- 3. Иммунологические методы исследований / Под ред. И. Лефковитса, Б. Перниса. М.: Мир. 1988.
- 4. Моноклональные антитела / Под ред. Р.Г. Кеннет, Т. Дж. Мак-Керн, К.Б. Бехтол. М.: Медицина. 1983.
- 5. Биотехнология. В 8 кн. / Под ред. Н.С. Егорова, В.Д. Самуилова. Кн. 3. Клеточная инженерия М.: Высшая школа. 1987.
- 6. Неизотопные методы иммуноанализа // Итоги науки и техники. М.: ВИНИТИ,. Сер. Биотехнология. Т.3. 1987.
- 7. Новые направления в развитии иммунологических методов анализа // Итоги науки и техники. М.: ВИНИТИ,. Сер. Биотехнология. Т.24. 1990.

ПЕРЕЧЕНЬ ЛАБОРАТОРНЫХ ЗАНЯТИЙ

(10 часов)

- 1) Освоение микропланшетного ридера Multiscan (4 час).
- 2) Подбор оптимальных условий проведения реакции окисления тетраметилбензидина пероксидазой хрена в микропланшетах и регистрации продуктов реакции с помощью микропланшетного ридера Multiscan (2 часа).
- 3) Определение кинетических параметров окисления тетраметилбензидина пероксидазой хрена (4 часа).

ПЕРЕЧЕНЬ КОНТРОЛЬНЫХ МЕРОПРИЯТИЙ УПРАВЛЯЕМОЙ САМОСТОЯТЕЛЬНОЙ РАБОТЫ СТУДЕНТОВ

- 1. Промежуточный зачет по разделу «Физико-химические закономерности взаимодействия антиген-антитело».
 - 2. Промежуточный зачет по разделу «Методы ИФА».

МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ ПО ОРГАНИЗАЦИИ САМОСТОЯТЕЛЬНОЙ РАБОТЫ СТУДЕНТОВ

Для организации самостоятельной работы студентов по учебной дисциплине следует использовать современные информационные технологии: разместить в сетевом доступе комплекс учебных и учебно-методических материалов (программа, методические указания к лабораторным занятиям, список рекомендуемой литературы и информационных ресурсов, задания для осуществления самоконтроля и др.).

Эффективность самостоятельной работы студентов целесообразно проверять в ходе текущего и итогового контроля знаний. Для общей оценки качества усвоения студентами учебного материала рекомендуется использование рейтинговой системы.

ПЕРЕЧЕНЬ РЕКОМЕНДУЕМЫХ СРЕДСТВ ДИАГНОСТИКИ

Для текущего контроля качества усвоения знаний студентами рекомендуется использовать следующий диагностический инструментарий:

- защита индивидуальных заданий при выполнении лабораторных работ;
- защита подготовленного студентом реферата;
- письменные контрольные работы по отдельным темам курса;
- компьютерное тестирование.

СТРУКТУРА РЕЙТИНГОВОЙ ОЦЕНКИ ЗНАНИЙ

Итоговая оценка (минимум 4, максимум 10 баллов) определяется по формуле:

Итоговая оценка = $A \times 0.4 + \mathbf{E} \times 0.6$,

где A — средний балл по лабораторным занятиям и УСР,

B– экзаменационный балл

Итоговая оценка выставляется только в случае успешной сдачи экзамена (4 балла и выше).

ПРОТОКОЛ СОГЛАСОВАНИЯ УЧЕБНОЙ ПРОГРАММЫ ПО ИЗУЧАЕМОЙ УЧЕБНОЙ ДИСЦИПЛИНЕ С ДРУГИМИ ДИСЦИПЛИНАМИ СПЕЦИАЛЬНОСТИ

Название учебной	Название	Предложения	Решение, принятое	
дисциплины,	кафедры	об изменениях в	кафедрой,	
с которой		содержании	разработавшей	
требуется		учебной программы	учебную программу	
согласование		учреждения	(с указанием даты и	
		высшего	номера протокола)	
		образования по		
		учебной		
		дисциплине		
Введение в	Молекулярной	Отсутствуют	Утвердить	
биотехнологию	биологии	Зав. кафедрой	согласование	
			протокол № 12	
		Евтушенков А.Н.	от 17 мая 2016 г.	
Иммобилизованные	Клеточной	Отсутствуют	Утвердить	
клетки и ферменты	биологии и	Зав. кафедрой	согласование	
	биоинженерии		протокол № 12	
	растений	Демидчик В.В.	от 17 мая 2016 г.	