МЕТОД РЕГИСТРАЦИИ ДИНАМИЧЕСКОЙ СПЕКЛ-КАРТИНЫ ПРИ МОНИТОРИНГЕ МИКРОЦИРКУЛЯЦИИ ПУЛЬПЫ ЗУБА

Дик С.К. 1 , Хлудеев И.И. 1,2 , Чистякова Г.Г. 3 , $\underline{^3}$ авацкий Д.А. 1 , Меженная М.М. 1 , Гордейчук Т.В. 1

¹ Белорусский государственный университет информатики и радиоэлектроники, Минск, Беларусь

Оптические неинвазивные методы диагностики внутреннего состояния зуба, витальности пульпы зуба, обладают рядом преимуществ перед рентгенографией: отсутствие ионизирующего излучения, малые размеры и стоимость оборудования, скорость получения результата, возможность представления диагностической информации в динамике, в качестве видеоряда. В то же время пульпа зуба содержит большое количество кровеносных и лимфатических сосудов, нервных окончаний. Травма либо инфекция могут привести к некрозу пульпы, что способствует проникновению микроорганизмов, токсинов, биогенных аминов в периодонт и развитию периодонтита. Таким образом, существует необходимость в быстром, недорогом и удобном методе диагностики витальности пульпы зуба.

Человеческий зуб представляет собой оптически неоднородную среду. При попадании на него когерентного фотоизлучения наряду с поглощением и отражением, происходит рассеяние света [1], что при наличии большого количества микронеровностей формирует спекл-картину – результат когерентного сложения элементарных волн. При наличии движения рассеивающих центров спекл-картина непрерывно перестраивается, изменяется. Оптические свойства пульпы и активность микроциркуляции зависят от множества патологических факторов, таких как гиперемия, отёк, тромбоз, эмболия сосудов, ишемия пульпы и др. В связи с этим регистрация спекл-картины, промодулированной в пульпе зуба, является перспективным направлением экспресс-диагностики. Данная работа описывает разработанный нами метод видео-регистрации спекл-картины и обработки полученных кадров, а также результаты модельных экспериментов, проведённых с использованием данного метода и подтверждающих его работоспособность.

² Белорусский государственный университет, Минск, Беларусь ³ Белорусский государственный медицинский университет, Минск, Беларусь

Разработанный метод заключается в подаче пучка света от источника лазерного излучения на оральную поверхность зуба и регистрации видеокамерой спекл-картины с обратной, вестибулярной, стороны. Далее оцифрованные данные передаются на ПК для дальнейшей обработки и визуализации диагностической информации.

По данной методике были проведены эксперименты по регистрирации спекл-поля, прошедшего через зубной фантом с контролируемым «кровотоком». Фантом представляет собой удалённый моляр человека, в котором направлению от корня к коронке сделано сквозное отверстие. В полученный канал вводили микротрубку, через которую прокачивали раствор белков для имитации кровотока. Источником лазерного излучения служил маломощный полупроводниковый лазер с длиной волны 660 нм. Регистрировали спекл-картину в VGA-разрешении с частотой 120 кадров в секунду при помощи промышленной камеры Basler. Схема экспериментальной установки приведена на рисунке 1.

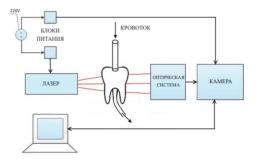


Рисунок 1 – Схема используемой установки

В качестве контролируемых параметров регистрируемого спекл-поля были выбраны: уровень сигнала АЦП камеры (соответствует яркости) и среднеквадратическая контрастность [2] спекл-картины, обработанной в соответствии с классическим алгоритмом LASCA [3], которую рассчитывли по следующей формуле:

$$C = \sqrt{\frac{1}{MN} \sum_{i=0}^{N-1} \sum_{j=0}^{M-1} (I_{ij} - I)^2}$$

где C — среднеквадратическая контрастность спекл-картины; M и N—размеры сторон прямоугольника, внутри которого производится расчёт, в пикселях; I_{ii} — значение пикселя с координатами i и j;

Для оценки степени изменения параметров в зависимости от скорости движения рассеивающих центров измерения проводили при следующих условиях: в отсутствие кровотока, при низкой, средней и высокой скорости кровотока в фантоме для двух значений времени интегрирования 50 мс и 10 мс. Полученные видеоизображения (кадры) подвергали математической обработке и рассчитывали контролируемые параметры для интересующих областей размером 100 на 100 пикселей в центре фантома. Для каждой из зон провели расчёт среднего арифметического яркости и контрастности для спекл-фотографии и матрицы контрастности соответственно. Результаты расчётов приведены в таблице 1.

Таблица 1 – Результаты регистрации спекл-картины зубного фантома

Условия съёмки,	Среднее значение окна 100×100	
выдержка, мс	Яркость	Контрастность, 10-3
Статика, 50	120	533
Низкая скорость, 50	117	386
Средняя скорость, 50	121	153
Высокая скорость, 50	119	166
Статика, 10	82	526
Низкая скорость, 10	85	451
Средняя скорость, 10	82	333
Высокая скорость, 10	83	285

Таким образом, продемонстрирована эффективность метода регистрации спекл-картины внутри зубного фантома. Полученные значения контрастности спекл-поля коррелируют со скоростью кровотока пульпы зуба: чем выше скорость движения центров, рассеивающих лазерный луч, тем быстрее меняется спекл-картина, что при неизменном времени интегрирования приёмника излучения приводит к снижению контрастности.

Литература

- 1. Никоненко, Н.А. Оптические свойства кожи, тканей зуба и стоматологических материалов : учеб.-метод. пособие / Н. А. Никоненко. – 2е изд., испр. – Минск : БГМУ, 2015. – 35 с.
- 2. Peli, E. Contrast in complex images. / E. Peli // J. Opt. Soc. Am. 1990. P. 2032-2040.
- 3. Briers, J. D. Laser speckle contrast analysis (LASCA): a nonscanning, full-field technique for monitoring capillary blood flow. / J. D. Briers, S. Webster // J. Biomed. Opt. 1996. P. 174-179.