ОСОБЕННОСТИ ПАРАМЕТРОВ ФОТОСИНТЕЗА РАСТЕНИЙ, ВЫРАЩЕННЫХ ПРИ ПОНИЖЕННОМ ВОДНОМ ПОТЕНЦИАЛЕ СУБСТРАТА

Зубей Е.С.

Институт экспериментальной ботаники им. В.Ф. Купревича НАН Беларуси, Минск, Беларусь

В качестве экологически безопасного средства повышения адаптивного потенциала растений применяют сильнонабухающие полиакриламидные гидрогели. В небольших концентрациях эти вещества улучшают водный режим субстрата, а в более высоких — создают мягкий водный дефицит, индуцирующий стрессоустойчивость растений.

Целью исследования было установить амплитуду изменений параметров фотосинтетической активности растений, сформировавшихся при разных величинах водного потенциала (ВП) субстрата. Объектами являлись представители разных экоморф: мезофит базилик душистый (Ocimum basilicum L.), гигромезофит незабудка лесная (Myosotis sylvatica L.), ксерофит иссоп лекарственный (Hyssopus officinalis L.).

Растения выращивали в течение 6 нед. на субстратах, различающихся величиной ВП: -8, -10, -16, -25, -35 кПа. Пониженный ВП создавали путем добавления в почвогрунт водных растворов полиакриламидного гидрогеля «Гисинар» в различной концентрации. Влажность субстратов в вариантах была одинаковой. Контролем служили растения, выращенные в почвогрунте без гидрогеля, с величиной ВП около –4 кПа. ВП субстрата измеряли при помощи тензиометра DM-8 Nieuwkoop Aalsmeer (Нидерланды).

Скорости выделения и поглощения O_2 листьями исследовали с помощью оборудования PlantVital 5030 (Германия); поглощение CO_2 фиксировали с применением газоанализатора TESTO 330-1LL (Германия). Флуоресценцию хлорофилла исследовали с помощью флуориметра CM 2203 (РБ). Вычисляли коэффициенты ω [1] и Rfd (коэффициент спада флуоресценции) [2]. Общее содержание хлорофиллов определяли с помощью хлорофиллометра DUALEX (Франция).

Параметры фотосинтетической активности полученных фенотипов растений представлены в таблице.

Таблица. Параметры фотосинтеза растений, выращенных при разном

водном потенциале субстрата

водном потенциале субстрата					
Водный	Скорость	Коэффици-	Коэффици-	Коэффици-	Скорость по-
потен-	выделения	ент эффек-	ент флуорес-	ент флуорес-	глощения
циал суб-	O2, мг/дм ² ·ч	тивности	ценции хло-	ценции хло-	CO ₂ ,
страта,		фотосинтеза	рофилла ω,	рофилла	$M\Gamma/дM^2 \cdot Ч$
кПа		КрһА, отн.	отн. ед.	Rfd, отн. ед.	
		ед.			
базилик (Ocimum basilicum L.)					
-4 (K)	$0,60 \pm 0,054$	$1,11 \pm 0,078$	$1,65 \pm 0,056$	$3,35 \pm 0,440$	$2,53 \pm 0,124$
-10	$0,50 \pm 0,045$	$1,28 \pm 0,090$	$1,59 \pm 0,062$	$4,86 \pm 0,421$	$3,63 \pm 0,186$
-16	$0,50 \pm 0,045$	$2,05 \pm 0,143$	$1,45 \pm 0,049$	$6,69 \pm 0,564$	$4,17 \pm 0,219$
-25	$0,58 \pm 0,052$	$1,42 \pm 0,099$	$1,41 \pm 0,072$	$3,49 \pm 0,358$	$6,28 \pm 0,315$
-35	$0,48 \pm 0,043$	$1,27 \pm 0,089$	$1,38 \pm 0,037$	$3,21 \pm 0,416$	$4,87 \pm 0,247$
незабудка (Myosotis sylvatica L.)					
-4 (K)	$0,61 \pm 0,074$	$1,10 \pm 0,092$	$1,16 \pm 0,023$	$1,83 \pm 0,159$	$4,10 \pm 0,205$
-8	$0,52 \pm 0,067$	$1,29 \pm 0,127$	$1,16 \pm 0,019$	$1,98 \pm 0,178$	$5,47 \pm 0,271$
-10	$0,54 \pm 0,071$	$1,26 \pm 0,117$	$1,25 \pm 0,019$	$1,82 \pm 0,197$	$4,63 \pm 0,233$
-16*	$0,79 \pm 0,021$	$1,06 \pm 0,126$	$1,17 \pm 0,047$	$1,56 \pm 0,200$	$4,51 \pm 0,266$
иссоп (Hyssopus officinalis L.)					
-4 (K)	$1,29 \pm 0,094$	$3,77 \pm 0,308$	$1,35 \pm 0,031$	$3,62 \pm 0,270$	$7,2\pm0,331$
-10	$1,55 \pm 0,191$	$3,96 \pm 0,304$	$1,35 \pm 0,047$	$3,57 \pm 0,249$	$7,4 \pm 0,377$
-16	$2,50 \pm 0,176$	$4,77 \pm 0,329$	$1,38 \pm 0,038$	$3,83 \pm 0,151$	$8,3 \pm 0,433$
-25	$2,59 \pm 0,252$	$4,58 \pm 0,389$	$1,44 \pm 0,024$	$4,10 \pm 0,177$	$8,0 \pm 0,401$
-35	$1,47 \pm 0,099$	$3,77 \pm 0,345$	$1,36 \pm 0,040$	$3,32 \pm 0,247$	7.8 ± 0.381

^{*} при ВП -25 кПа и ниже растения незабудки не развивались

У растений базилика, выращенных при пониженном ВП субстрата, скорость фотосинтеза по O_2 была ниже контрольной на 17–21 %, за исключением растений, выращенных при -25 кПа, у которых этот параметр был идентичен контрольному. Однако скорость дыхания листьев опытных растений была существенно снижена, в связи с чем коэффициент эффективности фотосинтеза KphA, вычисляемый по соотношению скоростей выделения O_2 к поглощению, был повышен (табл.). Максимальное значение KphA наблюдалось при -16 кПа (на 84 % выше контроля).

У растений незабудки при ВП -8 и -10 кПа скорость фотосинтетического выделения $\rm O_2$ листьями была ниже контрольной на 15 и 11 %, соответственно. При этом интенсивность дыхания также существенно снижалась, и коэффициент KphA в этих вариантах превышал контрольный на 17 и 15%, соответственно. При ВП -16 кПа отмечался рост скоростей фотосинтеза и дыхания, а KphA был идентичен контрольному.

Скорость фотосинтеза опытных растений иссопа была выше контрольной. Особенно существенно (до 2 раз) этот параметр возрастал при

-16 и -25 кПа, для этих растений отмечен и наиболее высокий KphA (на 26 и 21 % выше контрольного, соответственно). При ВП -35 кПа коэффициент KphA снижался и был идентичен контрольному.

Параметр флуоресценции хлорофилла ω листьев базилика в диапазоне ВП субстрата -16 — -35 кПа снижался на 12-16 %, свидетельствуя о наличии стресса, у остальных видов изменялся незначительно (табл.). У растений иссопа, выращенных при -25 кПа, параметр ω превышал контрольный на 8 %.

Коэффициент Rfd флуоресценции хлорофилла возрастал у растений иссопа и базилика в диапазоне ВП от -10 до -25 кПа, у незабудки от -8 до -10 кПа (табл.). При более низком ВП значения Rfd были ниже контрольных. Максимальный Rfd был у фенотипа базилика при ВП -16 кПа (в 2 раза выше контроля), у незабудки при -8 кПа (на 8% выше контроля), у иссопа при ВП -25 кПа (на 13 % выше контроля).

Повышение квантовой эффективности фотосинтеза может быть связано с более высоким содержанием хлорофиллов, которое отмечено у опытных растений. Максимальное содержание пигментов на единицу площади листа у базилика и иссопа было при ВП -25 кПа, у незабудки при ВП -16 кПа (на 22, 19, и 13 % выше контроля, соответственно).

Установлено, что при пониженном ВП субстрата существенно возрастали скорости поглощения CO_2 листьями растений (табл.). Максимального значения у растений базилика этот параметр достигал при ВП -25 кПа (в 2,5 раза выше контроля). У незабудки и иссопа диапазон изменения скоростей поглощения CO_2 был ниже. Максимальные значения были у растений незабудки при ВП -8 кПа (на 33 % выше контроля), у растений иссопа при ВП -16 кПа (на 15 % выше контроля).

Исследованные виды показали различную стратегию адаптации фотосинтетических процессов к пониженному ВП субстрата. У базилика и незабудки снижались скорости дыхания и фотосинтеза, у иссопа происходила интенсификация выделения O_2 . У растений базилика наиболее существенно возросла фиксация CO_2 . Стимуляция фотосинтетических процессов наблюдалась у представителей мезо- и ксерофитов при ВП субстрата -16-25 кПа, гигромезофита — при -8-10 кПа.

Литература

- 1. Метод определения функционального состояния растений по спектрам флуоресценции хлорофилла (техника биомониторинга) / К. Б. Асланиди [и др.]. Пущино: НЦБИ АН СССР, 1988. С. 43.
- 2. Флуоресценция хлорофилла растений как показатель экологического стресса: теор. основы применения метода / В. С. Лысенко [и др.]. // Фунд.

исслед. Биол. науки. [Электронный ресурс]. – 2014. – № 4. – Режим доступа: http://www.rae.ru/fs/?section=content&op=show_article&article id=10000320. – Дата доступа: 03.06.2014.

ПРИРОДА НИЖНЕГО ВОЗБУЖДЕННОГО СОСТОЯНИЯ СПЕЦПАРЫ БАКТЕРИАЛЬНОГО ФОТОСИНТЕТИЧЕСКОГО РЕАКЦИОННОГО ЦЕНТРА *RHODOBACTER SPHAEROIDES* И ДИНАМИКА ПЕРВИЧНОГО РАЗДЕЛЕНИЯ ЗАРЯДА

Ивашин Н.В., Щупак Е.Е.

Институт физики им. Б.И. Степанова НАН Беларуси, Минск, Беларусь

Предположение о разделении заряда внутри спецпары $P=P_AP_B$ (рис. 1) бактериального фотосинтетического реакционного центра *Rhodobacter Sphaeroides* (РЦПб) до переноса электрона (ПЭ) на вспомогательный бактериохлорофилл (B_A), расположенный в белковой субъединице L, высказывалось в ряде работ.

$$\begin{array}{c} B_A \\ \\ W-A \\ \\ His^{M202} \\ \\ P_B \\ \\ His^{L168} \end{array}$$

Рисунок 1 – Взаимное положение кофакторов P=P_AP_B, B_A и H_A в активной (L) ветви переносчиков электрона в РЦПб *Rhodobacter Sphaeroides* по данным рентгеноструктурного анализа

Так, анализ сечений комбинационного рассеяния мономерного бактериохлорофилла и спецпары указывает на то, что возбужденное состояние Р* вовлечено в очень быструю электронную релаксацию. Данные Штарк-спектроскопии свидетельствуют о наличии в состоянии Р* вклада возбуждения, соответствующего разделению заряда внутри спецпары. Транзиентные спектры поглощения выявили спектральные изменения в