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CnpaBez[JmBa CJIeayronias jJemMmma.

Jlemma. Moppusm Y sgrnsemces unvekmusHvim u oomunanmuvim. Credoeamensio, O(A) — PayUOHAIbHOE

MHO2000pasue. | '
HoxkazartenbcTBo. Ilpeanmomoxum, uyro gt X,Y e T(A) Mbl umeeM XAX  =YAY . Torma

X'Y=CeZ(4), r. e. Y=XC. Vuursisas, uro C = diag(C, ...,C

s), rae C, umeet Buf (1), u yuurteiBas
Bug mMatpuil X, Y us T(A4), nonyuaem, uto C = E — equnnunas Marpuiia, otkyaa X = Y. 3Haunt, Moppusm
p y p Y P 34

NWHBCKTHBCH.

IMockonpky dimQ (A) =n’>—dimZ (A) =dim7T (A), TO U3 HHBEKTUBHOCTH  CIIEAYET €r0 JOMUHAHTHOCTb,

T. €.y — OMpannoHaIsHBINA H30Mopu3M [ 7, mpeminoxenue 3.17], u O(A) OmpaIoHaIbHO H30MOP(PHO MHOTO-
obpasuio T(A), koTopoe, OueBHIHO, paHOHANLHO. JIeMMa 10Ka3aHa.

3aBepIuM J10Ka3aTesbCTBO TeopeMbl. O003HaYMM uepes3 /i, orpannueHue Mmoppusma f, Ha Z (A) xT (A)
HecnoxxHoe BbIUMCIEHUE OKa3bIBAET, UTO /1, — MHBEKTUBHBINA MOppU3M. JleHCTBUTENBHO, €CIU

hy (Cls X1)= hy (Cza Xz)a
TO
X, (4, B,C)) X{' = X, (4, B,C,) X5

3HauuT, X]AXI_1 =X2AX2_1, OTKyZa
X, =XG;, 3)
e C;eZ (A) VYuuteiBast Buj (1) Marpuu U3 ueHTpanuzatopa Z (A) u Buj marpui u3z 1’ (A), MoJTy4aeM
u3 (3), uto X; = X,. Torna pasencrso B)C; = B,C, Bunever C, =C,.
Tockomsky dimZ(A)xT(A4)=n*=dimW (A4), o mopdusm h, nomunanten. CrexoBarensHo, h, —
OupaIMoHaIbHBI H30MOP(HHU3M; W(A) OMpanroHATHHO HM30MOP(HO PpalUOHATHFHOMY MHOTO00PA3UI0
Z(A)xT(A). Teopema nokasaHa.
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Banepuii Baynasosuu benaw-Kpugey — noktop HU3NKO-MaTeMaTHUECKUX HAYK, 3aBEAYIOIINHA Kadeapoii BEICIIEH anreOpsl U 3a-
IIUTH HHPOpMALIUH MEXaHUKO-MaTeMarndeckoro dakymnsrera BI'Y.

Hzopv Onezosuu I'oeopyuiko — acniupanT Kadeapsl BRICIIEH anreOpsl U 3aUThl HHGOPMAaUU MEXaHUKO-MaTeMaTHYeCcKoro da-
kyasreta bI'Y. Hayunslit pykoBoautens — B. B. bensm-Kpuser.
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THE GENERAL SOLUTIONS OF SPARSE SYSTEMS WITH RECTANGULAR
MATRICES IN THE PROBLEM OF SENSORS OPTIMAL LOCATION
IN THE NODES OF A GENERALIZED GRAPH

PaccMOTPEHO MOCTPOCHHE OOIINX PEIICHHIH Pa3peKEHHBIX CHCTEM C IPSIMOYTOJIbHBIMU MaTPHIIAMH B 33/1a4€ ONTHMAJIBLHOTO pac-
IOJIOXKEHHST CEHCOPOB B y311ax 00o0meHHoro rpada. Mccneayemble CHCTEMBI Hapsay ¢ Pa3peskeHHOH YacTbio COASPIKAT yPaBHEHUS
obuiero Buja. Marpumna paspeKeHHOH 4aCTH HEIOOIPEICICHHOH CHCTEMBI SBIISICTCS 0J0YHO-MAroHaIbHOM. TUIIBI Pa3peKeHHOCTH
MaTPUYHBIX OJIOKOB CHCTEMbI MOTYT OBITh pa3iM4HbIMH. J[OMOJHUTENbHAS YAacTh CHCTEMbl MOXKET MMeTh oOwmmii Buja. Ha ocHose
TEOPHHU JICKOMITO3UIIMK OIMOPBI CO3/aHbl Y()(PEKTUBHBIC METO/B! PEIICHHS JHHEHHBIX CHCTEM C TPSIMOYTOJbHBIMH Pa3peKCHHBIMH
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MarpyuiaMu U pasjindyHbIMU TUIIAMU PA3PECIKEHHOCTHU. DT MCTOIBI 63,31/IpyIOTC$I Ha TeOpeTI/IKO-Fpa(i)OBOﬁ CHeL[I/I(l)I/IKC CTPYKTYpPBbI OIIO-
PpbI U CBOMCTBax Oas3uca IIPpOCTpaHCTBa peIIIeHI/Iﬁ OJHOPOAHBIX PA3PEIKCHHBIX CUCTEM CHECHHAJIbHBIX TUIIOB. Hcnonbs30BaHbI beH,IIa-
MEHTAJIbHBIC PE3YNbTAThl TEOPUHN ITOTOKOB U JAOCTUIKEHUS B TEXHOJIOTUU NMOCTPOCHUA aHATUTUYCCKUX U YUCIICHHBIX pCH.IeHI/Iﬁ pas-
PEKEHHBIX HEAOONPEACIICHHBIX CUCTEM.

Knroueevle cnosa: npsMoyroiibHasi pa3pekeHHAs MaTPHLA; HEAOOIIPE/ICICHHAs CHCTEMa; CEHCOP; 0000LIEHHBIH rpad; HEBBIPOXK-
JICHHBIH KT, K03 GHUIMEHT Tpeodpa3oBaHus IyTrOBOTO MOTOKA; O1opa; o0liee pelieHne pa3perKeHHOH CUCTEMBbI; JEKOMITO3UIIHSI.

The article is devoted to constructing the general solutions of sparse systems with rectangular matrices in the problem of sensors
optimal location in the nodes of a generalized graph. The matrix of sparse part of the investigated underdetermined system is a block-
diagonal matrix. The sparsity types of the matrix blocks of the system may be different. The additional part of the system may have
a common form. On the basis of the theory of decomposition of support we construct the effective methods of solutions of linear systems
with rectangular sparse matrices with different types of sparsity. These methods are based on the theoretic-graph specificities of the
support structure and on the properties of the basis of the solution space of homogeneous sparse systems of special types. We apply the
fundamental results of the theory of flows and advancements in the technology of construction the analytical and numerical solutions
sparse underdetermined systems.

Key words: rectangular sparse matrix; underdetermined system; sensor; generalized graph; non-degenerate cycle; transformation
coefficient of arc flow; support; general solution of a sparse system; decomposition.

The methods of decomposition and the theory of graphs partitioning are applied for constructing the general
solutions of the systems with special sparse matrices. These systems arise in the Sensor Location Problem for
one new application connected to the optimal sensors location in the nodes of a generalized graph.

Statement of problem. In [1] the problem of optimal location of the sensors in the nodes of a connected
generalized graph (Sensor Location Problem for the generalized graph) was considered. To solve this problem
has been investigated the sparse underdetermined linear system

iel,

PIETEED I e (D

jelf (U) jeli (U) 0, iEI\]*.

X

Here G = (I , U ) is a finite oriented connected symmetric graph with set of nodes / and set of arcs U. I” is
the set of nodes with variable intensities x,;, i€/ LIl U, is transformation coefficient of the arc flow
x, (i, j)eU.

On the basis of a priori given information in the Sensor Location Problem for the generalized graph [1] the
system (1) can be converted to the following form:

x,+b,iel,

P I T (2)

jelf (0) jelr ([0) a, ie I\ j*,
Y Mx,=0p=lg. 3)
(i,j)eU

Here graph G= (f , l_/) with a set of nodes 7 and a set of arcs U can be not connected and not symmet-
ric; 1 " is a set of nodes of the graph G with variable intensities X +b, ie ;*, I3 cl Graph G consists
from m connected components G" = ([ "U "), n= I,_m, where I is a set of nodes with variable intensities
X, +b,ie I: for the connected component G" = (I", U”), I: C }* Here x, ; is the arc flow, (i, j) € 17, qis
the number of additional equations (3), a,, b,,A”; are rational numbers. I} (l_]), I (l_]) are defined as fol-
lows: I (17): {j el: (i,j)eU}, I (17): {j el:(j, i)el_]}. W, ; is transformation coefficient of the arc
flow x; ., (i, j)el_] [2]. The sets I (U”), I (U”) are defined as follows: I (U”): {j el": (i, j)eU"},
L(ur)={jer:(.iev}l

To solve the system (2)—(3) we decompose the sparse part of the system of equations and its additional part.
The sparse part (2) of the equations of the system (2)—(3) represents a sparse structure of the system. The ma-
trix of the system (2) is a block-diagonal one. We do not change the sparse part of the block-diagonal matrix

of the system (2). The sparsity types of the matrix blocks of the system (2) may be different. The additional
part (3) of the equations of the system (2)—(3) may have a general form. We start the process of solution by
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considering the network part (2) of the sparse underdetermined system (2)—(3) and first explore the types of
sparsity and a structure of support [2, 3] for each block of the sparse matrix of the system (2).
Types of sparse systems. Each block with number 7 of the matrix of the system (2) corresponds to some

connected component G" = (1 U "), n=1,m. We consider the types of sparse systems of the form (2) for

each connected component G" =([",U"), n= I,_m These types of sparse systems were obtained as a result
p yp Y y

of usage of a priori given information in the Sensor Location Problem [1]. There are 4 types of sparse systems
listed below.
Type 1. If for any connected component G” there is no transformation of arc flows (the transformation

coefficient p, ; of the arc flow x, ; is equal to 1 for each arc (i, j)eU") and I, =@, then the system (2) for
block with number » has the form:

o ox,- Y x,=a,iel (4)
jert(v”) jeli(u”)

Type 2. If for any connected component G" = (I U ”) there is no transformation of arc flows (the trans-
formation coefficient W, ; of the arc flow x, ; is equal to 1 for each arc (i, j)eU") and I # @, then the sys-
tem (2) for block with number 7 has the form [3, 4]:

x,+b,iel : ,
PIENEEDY xj,i:{l e )
jerr(u”) jeii(v) a, iel"\I,.

Type 3. If the connected component G” = (I U ”) contains at least one non-degenerate cycle [2] (trans-
formation coefficient W, ; for some arcs (i, j ) eU" isnotequal to 1, i. e. there is transformation of arc flows)
and [/ : =(J, then the system (2) for the block with number » has the form [2, 3]:

z X~ 2 W, x,=a,iel". (6)
je[,.*(u") je1{(U”)

Type 4. If the connected component G = (1 U ") contains at least one non-degenerate cycle (coefficients W,

for some arc flows x, ;, (i, J ) eU", are not equal to type 1 and I, # D, then the system (2) for block with num-
ber n has the form [5]:

x,+b, iel,
PIENEED) M,-,,—x,-,,:{ R (7
jel{’(U") je’i_(U") a, iel \I”
With help of the types of the sparse systems (4), (5), (6) and (7) for the connected components

G" = (] U ”), n= I,_m and on the basis of the theory of decomposition of support one can construct the ef-

fective methods of solutions of linear systems with rectangular sparse matrices with different types of sparsity.
These algorithms are based on the theoretic-graph specificities of the structure of the support and on the prop-
erties of the basis of the solution space of homogeneous sparse systems of special types. The decomposition of
the support, as a result, the decomposition of sparse underdetermined systems is one of the main steps in the
solution of linear systems with rectangular sparse matrices [6]. Combinatorial aspects of the Sensor Location
Problem for the graph are discussed in [7].

Graph-theoretic properties of the support. Now, let us represent the graph-theoretic properties of the sup-

port R of the graph G" = (I "U ") for each type of the sparse systems (4), (5), (6) and (7).
Consider the structure of the support R, of the graph G" = (I U ") for the system (4). Let R, =Uy be

a support of a graph G" = (] U ”) for the system (4), I, = Q.
Theorem 1. The support R, =Uy of the graph G" = (I U ") for system (4) is a spanning tree.
The proof can be found in [2, 3, §].
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Consider the structure of the support R, of the graph G" = (I U ") for the system (5). Let R, = {U 2> I;”}
be a support of a graph G” = (1", U”) for system (5), where 1" #Q, I,' 1.

Theorem 2. The support R, = {Uz, I;”} of the graph G" = (I", U”) for system (5) is the forest of trees and
each tree of the forest contains exactly one node from the set I #D, I, cI..

The proof see in [3, §].

Consider the structure of the support R, =Uj of the graph G" = (I " U ”) for the system (6).

Theorem 3. The support R, =Uy of the graph G" = (1 U ") for system (6), I, =D consists of the
connected components, each of which has a single non-degenerate cycle 2, 3].

Let R, = {UZ, I;"} be a support of graph G" = (I", U") for system (7), I, # @.

Theorem 4. The support R = {Uﬁ, I;”} of the graph G" = (I", U") for system (7), 1, < I, consists of
the connected components, each of which may have one of the following structures:

* the connected component of the support R = {U; , I;"} is a tree which has exactly one node from the set
17221 1,

* the connected component of the support R = {U;, I;”} does not contain nodes from the set Iy and

contains a single non-degenerate cycle.
The proof see in [5, 9].
General solutions of sparse systems. The theoretic-graph properties of the support R, of the graph

G" = ([ U ”) for the sparse systems (4), (5), (6) and (7) with different type of sparsity are investigated. The

decomposition theory for a graph will be applied to construct the solutions of linear algebraic systems with
rectangular sparse matrices with different types of sparsity. We apply also the theoretic-graph properties of

the support R of the graphs G” = (I U "), n=1,m for constructing the basis of the solution space to sparse

homogeneous algebraic systems, generated by sparse systems (4), (5), (6) and (7) respectively.
Theorem 5. The general solution of a sparse system (4) and (6) has the following form:

X;= D xt,pﬁz;“[%j— > fr,pﬁzy-"}(i,f)ev;, ®)
(t.p)

(v,p)eU"\UR eUM\Ug

where 8(T,p)= (81’].", (i, j)e U"), (t,p)eU"\Uy form the fundamental systems of solutions of the homo-
geneous systems, generated by the system (4) or (6) correspondingly. The vectors X = (i}, I (i, j) eU ”) are

partial solutions for the non-homogeneous system (4) and (6) accordingly.

Corollary 1. If the partial solutions of the non-homogeneous system (4) or (6) constructed according to
the rules: non-supporting elements the vectors X are equal to zeros and supporting elements satisfy to the
system (4) or (6) accordingly, then the general solution of a sparse system (4) and (6) has the following form:

x,= Y x 000 +% (i, /)€Uy ©)
(t,p)eU"\UR

Effective algorithms for finding the fundamental system of solutions of the homogeneous system, gen-
erated by the system (4) are presented in [3, 8]. Also, the effective algorithms for finding partial solutions

X= ()Zi, i (i, j ) elU ") of the sparse linear non-homogeneous systems (4) and (6) are obtained in [3]. The num-
ber of operations for computing non-zero components of every vector 5(17, p) = (8;’]", (i, i ) eU ") of the fun-

damental system of solutions of the homogeneous system, generated by the system (4) or (6), is proportional
to the number of non-zero components of every vector (t, p), (’E, p) eU"\Uy [3].
Theorem 6. The general solution of a sparse system (5) and (7) has the following form:

94



MaremaTuka u HuHpoOpMaTHKA

STEEED YA R Y xﬁ?ﬁ(x Y xS0 X &8 L(Lj)eUn  (10)
(t.p)

(t,p)eUM\U} yeL\IY eUM\U} yeL\IY

= ) x,0+ Y ox B+ E- Y % 8P Y 8 |iely. (11)
(t,p)eU"\UR ye MR (t,p)eU"\UR ye LMY
Corollary 2. If the partial solution X = ()?l.’j, (i, j) eU"; x,,ie I:) constructed according to the rules: non-

supporting elements of the vectors X are equal to zeros, then the general solution of the systems (5) and (7)
has the following form:

X, = z X, 0.0 + Z x,8 +%, (i, j) €Uy, (12)
(r,p)eU"\UR ye IR
X, = z X, .0+ z Xl +%, iely, (13)
(t,p)eUM\U} ye g
where the vectors
8(t.p)=(877. (i, j)eU"; 87°,iel}), (t.p)eU"\Uy, (14)
8(v)=(8!,.(i. j)eU™; 8!, iel), yel\I} (15)

form a fundamental system of solutions of the homogeneous system of linear algebraic equations, generated
by the systems (5) or (7) respectively.

The effective algorithms for computing non-zero components of characteristic vectors (14) and (15) and
partial solutions of the systems (5), (7) are suggested in [3].

Decomposition of the system. Let substitute the general solution (9) for each of the systems (4), (6) to (3)

for the some connected component G" = (] U ”). As a result, we obtain the system (16) for the connected
component G" = (1”, U”):
Y, Alx,=- 3 M %, p=lg, (16)

(t,p)eU"\UR (i,j)eUR

where

AL =M+ Y AP, p=1.q,, (1,p)eU"\Uy,

(i,/)eUR
g, 1s the number of additional equations (3) for the some connected component G" and R, =U; is a support
of graph G" = (1 " U ") for considered system in the form (4) or (6) respectively, I, =@. Thus, for some con-

nected component G” = (1 " U ") we excluded the unknown x, ,, (i, ]) € U;, which correspond to the arcs of

supports R =U; of the graphs for the systems (4) and (6) respectively.
Similarly, for each systems (5), (7) we substitute the general solution (12) to the system (3) for the some

connected component G” = (1 U "):

2 Mgt X Mx,= Z% DI VAN M LR i

(i,j)eU} (t,p)eU"\UR (i,j)eU} (t,p)eU"\U} ye IR

+ Y M x.,=0, p=lg, (17)

(t,p)eU"\UR
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where ¢, is the number of additional equations (3) for the some connected component G” and R, = {U 2o 1 ;"}

is a support of graph G" = (I U ") for considered system (5), (7) respectively, I, # . We change the sum-
mation order in (17)

Yo ox M+ D AL+ Y x| Y, ALY =

(t,p)eU"\U} (i,j)eU} yeI\IY (i,j)eU}
> M %, p=lg, (18)
(i.j)eUk
We denote
AP =M+ D A8, (T,p)eU"\U;,
(i,/)eUR
2 A BT yel\I', A== > A%, p=Lg,
(i./)eUk (i.J)eUk
The system (18) gets to the form:
Y, Alx,+ 2 Alx =4, p=1lq,. (19)
(v,p)eU"\UR ye Iy

Thus, we excluded the unknown x, , (i, j ) €Uy, x,, iel;" from systems (5) and (7) which correspond to
the support R = {U oIy } of the graph for the system (5) and (7) respectively for the connected component
G'=(1,u").

For the system of a linear algebraic inequalities was suggested enabling one to get the substitutions for non
basic variables in the redundant algebraic systems [10]. However, the suggested method does not point which
variables to be selected as basic ones.

For the blocks of the sparse matrix of the underdetermined system (2) we apply the fundamental results of
the theory of flows in networks, as well as advancements in the technology of construction their analytical and
numerical solutions.
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Jwomuna Anopeeena IMununyyk — xanauaar GpU3NKO-MaTEMAaTHYECKUX HAyK, TOLEHT Kaeapbl KOMIIBIOTEPHBIX TEXHOJIOTHH
U cucTeM (aKyJapTeTa MPUKIAIHON MaTeMaTHKK U uHpopMaruku BI'Y.

Onez Bumonvoosuu I'epman — KaHIUIAT TEXHUYCCKUX HAyK, AOLCHT Kadeapbl HHPOPMAIIMOHHBIX TEXHOIOTHI aBTOMATH3UPO-
BaHHBIX CHCTeM (hakyinbTeTa HH()OPMAIIMOHHBIX TEXHOJIOTHI U yIpaBicHUs belopyccKoro rocy1apcTBEHHOrO0 YHUBEpPCUTETa HHMOP-
MAaTHKH U PAJANOIICKTPOHUKH.

Anopeit Cmenanosuu Ilununuyk — conckarenb kadeIpsl METOIOB ONTUMAIBHOTO YIpaBiIeHHs (paKyIbTeTa MPUKIaJHON MaTemMa-
tiku 1 nHdopmaruku BI'Y. Hayunslit pykoBoauTens — TOKTOp (U3MKO-MaTeMaTHUYECKUX HayK, Ipodeccop, 3aBeayroluii Kadeapoit
METOZIOB ONTHMAJIBHOTO YIIPaBIeHUS (haKy/IbTeTa IPUKIagHoH MaTeMaTrku n nHpopmartuku BI'Y A. W. Kanunun.
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