
  
    Abstract − In the present paper, the mathematical modeling of 
the viscoelastic periodontal membrane is carried out. Internal surface 
of the periodontal ligament is adjacent to the outer surface of the 
tooth root, the geometric shape of which is described by the equation 
of an elliptic hyperboloid. The external surface of the periodontal 
membrane is shifted along the normal to the outer surface of the root 
and fixed on the dental alveolus bone. Relationships between 
displacements and deformations of the periodontal ligament are 
formulated with due account for incompressibility of the periodontal 
tissue. Viscoelastic properties of the periodontium are described by 
the relaxation kernel with Rabotnov’s fractional exponential 
function. A system of equations of motion in terms of the 
translational displacements and rotation angles of the tooth root is 
obtained. Particular cases of the equations of motion corresponding 
to the translational motion in the vertical and horizontal directions 
are formulated. 
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I. INTRODUCTION 
HE periodontal ligament is a thin membrane which keeps 
the root of the tooth within the alveolus bone, amortizes 

and distributes the occlusal load on the tooth by means of the 
collagen fibers. Under normal conditions, the contact between 
the tooth root and bone tissue is absent. The load acting on the 
tooth crown is transmitted to the alveolar bone via the 
periodontal ligament. Short term (initial) and long-term 
(orthodontic) tooth displacements, generally considered as 
regulated by the strains and stresses of the periodontal 
ligament because teeth are assumed to be almost completely 
rigid, are connected with almost the same rigid alveolar bone 
[1]−[5]. These circumstances explain the urgency of 
developing a mathematical model of the periodontal ligament, 
which allows one to determine the stress-strain state of 
periodontal tissue under the short-term and long-term loads. 
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Viscoelastic equations of the state of the periodontal 
ligament allow one to describe adequately the function of 
tissues of the supporting apparatus of the tooth without using  
simplified or too complex mathematical models [6], [7]. In 
particular, a viscoelastic model enables one to avoid 
discrepancies in the values of physiological and calculated 
stresses in the periodontal tissues, as well as to explain the 
dependence of the physiological response of periodontal tissue 
to the action of the load with time and to combine the motion 
of a nonstationary viscous liquid phase with instantaneous, 
like a rigid body, behavior [8], [9]. 

The known existing viscoelastic models are based on the 
use of the Maxwell single element [10], the Kelvin-Voigt 
model (spring and shock absorber in parallel connection) [11], 
[12], or nonlinear springs with three parameters [13], [14]. 
Attempt to execute the simulation of a periodontal ligament 
via a linear viscoelastic law has been undertaken in [15] and 
[16]. Nevertheless, it is shown in [17] that the nonlinear 
simulation of properties of periodontal tissue provides a more 
accurate and reliable calculation of stresses and strains in a 
wide range of tooth displacements. Some researchers have 
demonstrated the viscoelastic behavior of the periodontal 
ligament of human and primate, but have not offered a 
quantitative description [18]−[21]. An improved approach to 
the study of the mechanical behavior of periodontium features 
based on the quasi-linear viscoelastic phenomenological 
model was proposed in [22]. However, these results have been 
questioned, since the nonlinear behavior of the periodontal 
ligament may not be well described by a quasi-linear 
viscoelastic theory, which is used usually in biomechanics of 
tissue [23]. 

The most important results related to the finite element 
calculation of the viscoelastic models of the "root of the 
tooth−periodontal ligament−alveolar bone" could be found in 
[24]−[27]. 

A review of the results concerning the viscoelastic models 
of the periodontal ligament shows that an accurate information 
about the relationships between the viscoelastic response and 
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periodontium structure are lacking, as well as a unified 
approach to the description of the properties of periodontal 
tissue is absent. Great bulk research on the properties and 
behavior of periodontium still treats it as a linearly elastic 
material [7]. A universal model of the periodontal ligament 
allowing one to describe the phenomenological behavior of 
periodontium under a system of forces acting for a long time 
(orthodontics) or discontinuous load (occlusal load) is not 
formulated. To generalize viscoelastic models corresponding 
to different types of loading the periodontal ligament, a 
viscoelastic model with fractional operators involving relaxed 
and nonrelaxed moduli, the relaxation time and the fractional 
parameter (the order of a fractional derivative or fractional 
operator) could be used [28]. Moreover, such models have 
been successfully applied for solving the problems of solid 
mechanics [29]−[33] and biomechanics [34]. 

The aim of this work is the formulation of the equations of 
motion of the periodontal ligament using a viscoelastic model 
with relaxed and nonrelaxed moduli, relaxation time and the 
fractional parameter, which allows one to determine the 
translational displacements and rotation angles of the 
periodontium points under the action of external loading. 

II. MATHEMATICAL MODEL OF THE PERIODONTAL LIGAMENT 
The outer surface of the tooth root and the adjacent inner 

surface of the periodontal ligament (we assume that the root of 
the tooth is an absolutely rigid body) are described by an 
elliptic hyperboloid: 
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where h  is  the height of the tooth root, ( )21e b a= −  is the 
ellipse eccentricity in the cross section of a tooth in an 
alveolar crest, a  and b  are the axles of ellipse in the cross 
section of the tooth root, and p  is a parameter of rounding of 
the tooth root. 

The internal surface of the periodontal ligament adjacent to 
the dental alveoli bone is shifted along the normal to the 
surface of the tooth root on the value δ . Its equation is as 
follows: 
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where xn , yn , and zn  are components of the unit normal 

vector to the surface (1). Considering (1), these components 
are defined as follows: 
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Under the action of a concentrated force on a tooth, the 

points of the periodontal ligament contiguous to surface of the 
tooth root (1) begin to experience some displacements, which 
are equal to those of the root. The external surface of the 
periodontal ligament (2) is fixed. There are no significant 
differences between the model calculations considering the 
fixing of the outer surface of the periodontal ligament in the 
alveolar bone or it rigid fixing. Therefore, when calculating 
the initial movement of the teeth in the periodontal ligament, 
both the teeth and the alveolar bone could be defined as solids 
[35]. 

Further we will consider a periodontal incompressible 
material with Poisson's ratio equal to 0.49. This means that the 
periodontal tissue begins to flow around the surface of the 
root of the tooth when the root is displaced to the wall of the 
dental alveolus [36]. Therefore, the components of the strain 
tensor in the coordinate system associated with the normal, 
generatrix and guide to the external surface of the tooth root 
could be represented as follows [36, 37]: 
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where nu , tu  and uθ  are the displacements of the 
periodontium points along the normal, generatrix and guide to 
the tooth surface, respectively, and δ  is a width of the 
periodontal ligament in the normal direction. The normal, 
generatrix and guide to the root surface of the tooth, as well as 
its geometrical dimensions are shown in Fig. 1. 
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Fig. 1 root of the tooth in the elliptic hyperboloid form: n  is the 
normal, t  is the generatrix, and θ  is the guide to the surface of the 
hyperboloid at the point P  
 

Let us express the components of the strain tensor in the 
coordinate system ( ), ,x y z  in terms of the components of the 
strain tensor in the coordinate system ( ), ,n t θ  [37]: 
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where 1T  is the rotation matrix relative to the guide θ



 on the 
angle α , 2T  is the rotation matrix relative to the z -axis on the 
angle ϕ , and T

1T  and T
2T  are the matrixes transpose of the 

matrixes 1T  and 2T , respectively. In the matrix 1T , the angle 
α  between the generatrix to the root surface and the xz -plane 
is given by 
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Transform the displacement vector ( ), ,n tu u uθ  of the point 

on the external surface of the tooth root (the internal surface 
of the periodontal ligament) from the coordinate system 
( ), ,n t θ  to the coordinate system ( ), ,x y z : 
 

1 2 .
n x

T T
t y

z

u u
u T T u
u uθ

   
   = ⋅ ⋅   

  
  

 (6) 

 
Substituting sequentially (4) and (6) in (5), we obtain 
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Any displacements of the tooth root could be described by a 

combination of the translational displacements 0xu , 0 yu , and 

0zu  along the coordinate axes and the angles of rotation xθ , 

yθ ,  and zθ  relative to the root apex of the same axes. Since 
the thickness of periodontium is very small, the rotation 
angles are also very small. Therefore, we can use the 
following linearized formula [37]: 
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To find the translational displacements and the rotation 

angles, the conditions of the dynamic equilibrium of the tooth 
root are utilized: 
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where ( ), ,x y zm m m m=

  is the principal moment of external 

forces, ( ), ,x y zf f f f=
  is the principal vector of external 

forces, r is the radius-vector, ( ), ,x y zn n n n=
  is the unit 

normal vector to the surface (1), σ  is the stress tensor, M  is 
the mass of the tooth root, J  is the axial moment of inertia of 
the tooth root, ( )0 0 0 0, ,x y zu u u u=

  is the vector of translational 

displacements of the tooth root along the coordinate axes, and 
( ), ,x y zθ = θ θ θ

  is the vector of rotation angles of the tooth 

root with respect to the coordinate axes. 
The relationships between the components of the stress 

tensor and the strain tensor taking the viscoelastic properties 
of the periodontal ligament into account are represented in the 
following form: 
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where ετ  is the relaxation time, 0E E

E
∞

ε
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−
ν = , 0E  and E∞  

are the relaxed (prolonged modulus of elasticity, or the 
rubbery modulus) and nonrelaxed (instantaneous modulus of 
elasticity, or the glassy modulus) magnitudes of the elastic 
modulus, respectively [28], and ( )γ ε∋ −τ τ  is the Rabotnov 
fractional exponential function, which describes the relaxation 
of volume and shear stresses [33]. It was introduced in 1948 
by Rabotnov [38] in the form 
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where 0 1< γ <  is a fractional parameter. 

Substitute (3), (5), (9) and (10) in (5). After 
transformations, we obtain a system of homogeneous 
algebraic equations with respect to the translational 
displacements and the rotation angles of the tooth root of the 
following form: 
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where xc , yc , and zc  are the stiffness coefficients of the 

periodontal ligament at the tooth root translation along the co-
ordinate axes, xycθ

 and yzcθ
 are the static moments of 

stiffness, xcθ  and zcθ  are the stiffness coefficients of the 
periodontal ligament at the tooth root rotations relative to the 
x -axis and z -axis, respectively, under the force acting along 
this coordinate axis, xµ , yµ , and zµ  are the  stiffness 

coefficients of the periodontal ligament at the tooth root 
rotations relative to the axes x , y  and z , respectively, and 

fx , fy  and fz  are the coordinates of the point where the 

load is applied. 
We note that the stiffness of the periodontal ligament and 

the moments of stiffness depend on the geometrical shape of 
the tooth root, Poisson's ratio and the relaxed and nonrelaxed 
elastic moduli of periodontal tissue and are time-independent. 
Therefore, the stiffness and the moments of stiffness could be 
eliminated from the integrals in (11). 

III. PARTICULAR CASES OF MOVEMENT OF THE TOOTH ROOT 
To find the material constants and the relaxation time, the 

experimental data on the stress-strain state of the periodontal 
ligament could be used and, in particular, the time-dependence 
of the periodontal points displacements. Typically, such data 
are obtained for the translational movement of the tooth root 
in the vertical and horizontal directions under the action of 
load, which takes on discrete values with time, or which is 
changed with a predetermined frequency. 

During the motion of the tooth root along the y -axis, the 
corresponding extrusion (or intrusion), the translational 
displacement along the x - and z -axes, as well as the angles 
of rotation are equal to zero, i.e., 0 0 0x zu u= = , and 

0x y zθ = θ = θ = . Load is acting only in the y -axis direction. 

In this case, from (11) we obtain 
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Under the action of a periodically varying load, particularly 
under the vertical component of the mastication load, 
relationship (12) can be represented as 
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Note that (12) and (13) are similar to the equations of 

motion of a viscoelastic oscillator considered in [39] and [40]. 
Equations of motion for the translational displacement of 

the tooth root in a horizontal plane, in particular, in the x -axis 
direction, we obtain from (11) that 0 0 0y zu u= =  and 

0x y zθ = θ = θ = . The load is acting along the x -axis, and the 

line of action of the force passes through the center of 
resistance of the tooth root with the coordinates 1(0, , 0)y . As 
a result, we have 
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To formulate the system of equations describing the 
translational motion of the tooth root in the x -axis, in (11) it 
is necessary to vanish to zero the displacements 0xu and 0 yu  

and all angles of rotation. In this case, only the z -component 
of load is acting on a tooth, and its line of action passes 
through the center of resistance with the coordinates 

2(0, , 0)y . 

IV. CONCLUSION 
To generalize viscoelastic models corresponding to 

different types of modeling the stress-strain state of the 
periodontal ligament under the action of concentrated forces 
and moments, the equations of motion of the tooth root 
involving the fractional exponential function are suggested. 
The advantage of this model is the use of the fractional 
parameter to describe the various pathological processes and 
age-related changes in the periodontium. Fractional parameter 
allows one to take the different behavior of the periodontal 

tissue during the action of different short-term and long-term 
loads into account. To find the material constants, the 
experimental data on the intrusion or extrusion of the tooth 
[41] - [44] can be used together with the solution of (12), or 
the results of experiments on the cyclic loading of the tooth 
[45, 46] together with the solution of (13), as well as the 
experimental data on the root translational displacement in a 
horizontal plane [47] together with the solution of (14). 
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