ПЛОСКИЕ ЗАДАЧИ ТЕОРИИ УПРУГОСТИ ДЛЯ ОРТОТРОПНОЙ ПРЯМОУГОЛЬНОЙ ОБЛАСТИ

Е. А. Гулидова

На практике использование анизотропных материалов сопровождается введением ряда упрощающих гипотез относительно характера анизотропии, усреднение упругих свойств на основе различных приемов и т. д. Это приводит к существенной недооценке влияния упругих свойств материала на реальное распределение напряжений в конструкциях.

Этот факт ставит на повестку дня необходимость разработки методов решения задач теории упругости анизотропного тела. Разработка методов решения плоских задач теории упругости анизотропного тела впервые начата в фундаментальных работах Векуа И. Н. [1], Лехницкого С. Г. [2], Михлина С. Г.[3], Савина Г. Н. [4], Шермана Д. И. [5], в которых заложены основы методов для решения граничных задач для плоскости, полуплоскости и канонических областей. Меньше всего решено задач для неканонических областей, таких как полоса [6], полуполоса [7], прямоугольник [8].

В настоящей работе ставилась цель расширить круг задач для ортотропного прямоугольника, в частности, произвести расчет неразрезной балки-стенки.

Постановка задачи: требуется рассчитать очень высокую и узкую балку, так называемую балку-стенку, опирающуюся на колонны и перекрывающую несколько равных пролетов. Нагрузка распределена равномерно по верху балки-стенки. Собственный вес последней учитывать не нужно. Для расчета необходимо принять, что балка-стенка имеет бесконечное число пролетов.

Рис.1. Расчетная схема задачи

Для решения достаточно исследовать только один пролет, так как при предполагаемом бесконечно большом числе пролетов все они будут находиться в одинаковых условиях. Реакции опор будем считать сосредоточенными и приложенными по осям колонн. Каждый пролет примем равным 2*l*. Высота балки-стенки *h*. Толщина ее равна единице. Решение будем искать в виде тригонометрического ряда, заключающего только *Cos*; решение с *Sin*, очевидно, не подходит, так как тогда нормальные напряжения также выражались бы через *Sin*. Но *Sin* – обратно-симметричная функция, которая меняет знак при перемене знака у аргумента *x*, между тем σ_x и σ_y должны быть симметричными функциями по отношению к оси *y*.

Уравнение совместности в функции напряжений:

$$a_{22}\frac{\partial^{4}U}{\partial x^{4}} + (2a_{12} + a_{66})\frac{\partial^{4}U}{\partial x^{2}\partial y^{2}} + a_{11}\frac{\partial^{4}U}{\partial y^{4}} = 0$$
(1)

Общее решение данного уравнения ПРЕДСТАВЛЯЕТСЯ такими бесконечными рядами:

$$U(x,y) = \sum_{n=1}^{\infty} Sin(ax)(C_1 e^{aAy} + C_2 e^{-aAy} + C_3 e^{aDy} + C_4 e^{-aDy}) + \sum_{n=1}^{\infty} Cos(ax)(C_5 e^{aAy} + C_6 e^{-aAy} + C_7 e^{aDy} + C_8 e^{-aDy}).$$

Оказывается, что одним тригонометрическим рядом ограничиться нельзя, так как не будут удовлетворены все условия на контуре; следует добавить еще полином 2-й степени.

Итак, решение будем искать в виде:

$$U(x,y) = \sum_{n=1}^{\infty} Cos(ax) [C_1 e^{aAy} + C_2 e^{-aAy} + C_3 e^{aDy} + C_4 e^{-aDy}] + E_1 x^2 + E_2 xy + E_3 y^2,$$

где $a = \frac{\pi n}{l}$, где n – целое число, равное порядковому номеру члена ряда; $A = \sqrt{\frac{2a_{12} + a_{66} + \sqrt{(2a_{12} + a_{66})^2 - 4a_{11}a_{22}}}{2a_{11}}}; D = -\sqrt{\frac{2a_{12} + a_{66} - \sqrt{(2a_{12} + a_{66})^2 - 4a_{11}a_{22}}}{2a_{11}}};$

Коэффициенты E - постоянные, коэффициенты же C зависят от порядковых номеров n и, следовательно, от a; для каждого члена ряда коэффициенты C имеют свои значения.

Функция τ_{xy} должна быть обратно симметричной; при перемене знака у x должен меняться и знак у τ_{xy} . Поэтому сразу заключаем, что $E_2 = 0$.

Краевые условия задачи имеют вид:

1) При x = 0 должно быть по условиям симметрии $\tau_{xy} = 0$. Оче-

видно, что это условие удовлетворяется.

2) При x = l должно быть $\tau_{xy} = 0$. И это условие удовлетворяется.

3) Сумма вертикальных напряжений σ_y в пределах полупролета должна быть равна нагрузке в этих же пределах. Это делает условие $\int_0^l \sigma_y \, dx = -ql$.

4) При y = 0 должно быть $\tau_{xy} = 0$.

5) При y = 0 должно быть $\sigma_y = 0$, кроме точки с координатой x = 0, т.е. кроме опоры; здесь вообще $\sigma_y = \infty$, т.к. опорная реакция предполагается сосредоточенной.

6) При y = h должно быть $\tau_{xy} = 0$.

7) При y = h должно быть $\sigma_y = -q$.

Знак минус объясняется тем, что вверху напряжения сжимающие. 8) Сумма горизонтальных нормальных напряжений в любом вертикальном сечении должна быть равна нулю, т. е.

$$\int_0^n \sigma_x dy = 0.$$

Решая систему линейных уравнений для нахождения коэффициентов, получаем выражения для напряжений:

$$\sigma_x = \sum_{n=1}^{\infty} Cos(ax) \frac{2ADq(DCh(aD[h-y])Sh(aAh) - ACh(aA[h-y])Sh(aDh))}{(ACh(aDh) - DCth(aAh)Sh(aDh))Sh(aAh)}; \qquad 2)$$

$$\sigma_y = -\sum_{n=1}^{\infty} a^2 Cos(ax) \frac{2q(ACh(aD[h-y])Sh(aAh) - DCh(aA[h-y])Sh(aDh))}{a^2(ACh(aDh) - DCth(aAh)Sh(aDh))Sh(aAh)}; \quad (3)$$

$$\tau_{xy} = \sum_{n=1}^{\infty} aSin(ax) \frac{2ADq(Sh(aDh)Sh(aA[h-y]) - Sh(aAh)Sh(aD[h-y]))}{a(ACh(aDh) - DCth(aAh)Sh(aDh))Sh(aAh)};$$

Выражения для перемещений:

 $u = \sum_{n=1}^{\infty} Sin(ax) \frac{2q(A(D^2 + \vartheta_{xy})Ch(aD[h-y])Sh(aAh) - D(A^2 + \vartheta_{xy})Ch(aA[h-y])Sh(aDh))}{aE_xSh(aAh)(ACh(aDh) - DCth(aAh)Sh(aDh)))};$

$$v = \sum_{n=1}^{\infty} \frac{2q}{E_y} \left\{ Cos(ax) \left[\frac{(-D^2(E_x + A^2 E_y \vartheta_{xy})Sh(aA[h-y])Sh(aDh)}{E_x aA(ACh(aDh) - DCth(aAh)Sh(aDh))Sh(aAh)} + \frac{A^2(E_x + D^2 E_y \vartheta_{xy})Sh(aAh)Sh(aD[h-y]))}{E_x aA(ACh(aDh) - DCth(aAh)Sh(aDh))Sh(aAh)} \right] + \frac{(D^2 - A^2)Cos(al)}{aAD(ACth(aDh) - DCth(aAh))Sh(aAh)} \right\}$$

Также найдем коэффициент поперечного сдвига:

$$\gamma_{xy} = \sum_{n=1}^{\infty} aSin(ax) \frac{2ADq(Sh(aDh)Sh(aA[h-y]) - Sh(aAh)Sh(aD[h-y]))}{aG_{xy}(ACh(aDh) - DCth(aAh)Sh(aDh))Sh(aAh)}$$

На основе полученных выражений для компонент напряжений, можно сделать вывод, что ортотропном случае эти выражения имеют более

сложную структуру, чем в изотропном. Это обусловлено тем фактом, что в ортотропном случае упругие модули имеют значительный градиент в отличие от изотропного случая. Изложенный здесь способ исследования напряженного состояния балки-стенки оказался очень удобным, так как пользуясь им, можно вводить достаточно произвольные нагрузки на длинных сторонах.

Литература

- 1. Векуа И. Н. Приложение метода акад. Мусхелишвили к решению граничных задач плоской теории упругости анизотропной среды // Сообщ. Груз. филиала АН СССР.-1940. –1, №10. –с.719–724
- 2. *Лехницкий С. Г.* Теория упругости анизотропного тела. Изд. 2-е. М.:Наука.1977. –416 с.
- 3. *Михлин С. Г.* Плоская деформация в анизотропной среде // Тр. ин-та / Сейсмологический ин-т АН СССР. 1937. №76. с. 1–19
- 4. *Савин Г.Н.* Некоторые задачи теории упругости анизотропной среды // Докл. АН СССР. -1939. -23, №3. с. 217–220
- 5. Шерман Д. И. Новое решение плоской задачи теории упругости для анизотропной среды // Докл. АН СССР. 1941. -32, №5. с. 314–315
- 6. *Gupta G. D.* The problem of a finite strip compressed between two rough rigid stamps // Trans. ASME. Ser. E. J. Appl. Mech. 1975, v.42. №1.p.81–87
- 1. *Лобода В.В.* Об особенностях напряженного состояния ортотропной полуполосы // ПММ. 1986. Т. 50. Вып. 2 с. 363-270
- 2. Лобода В.В. Об особенностях решения смешанной задачи теории упругости для ортотропного прямоугольника // Изв. АН СССР, МТТ. 1990, №2. с.103-110