
Moshchenskii, V.A.

P=NP

Counting the number of zero assemblies and satisfiability problem

It is an english translation of the article Moshchenskii, V.A. Counting the number

of zero assemblies and satisfiability problem. Publishing Center of the Belarusian

State University (Minsk). 2012.pp. 16 (in Russian).

ISBN 978-985-476-988-2 © 2012 Moshchenskii, V.A.

Introduction. It is well known [1, amongst others] that the satisfiability prob-

lem is to determine, for each conjunctive normal form (CNF), whether there ex-

ists such input that its value is true (one), or it is a constant Boolean function with

the value of zero (i.e., its value is zero on any input).

Given CNF with n variables, the number of all different inputs is2n . Hence if

we prove that this CNF takes the value of zero only on d different inputs, d<2n ,

then and only then is it satisfiable. This method was used in [2] and we partially

use it here in a special case.

At the initial step of computation, each CNF is expressed as a word in alpha-

bet)}(,,1,0,,{ xx [1]. For example, CNF K= 1 3 2 3 4x v x x v x v x translates to

1 11 10 11 100 .x x x x x Note that CNF expressed as a word of length m con-

tains no more than m elementary disjunctions (ED).

Lemma 1. Let F and G be two CNFs such that G only contains literals on the

variables included in F. Then the number of binary inputs on which CNF F G

takes the value of one, is not greater than the number of such inputs for F.

Proof. If CNF F is not satisfiable, i.e., there is no such input that makes its

value one, then it is clear that CNF F G is also not satisfiable (in this case it

does not matter which variables G includes).

2

Let us now suppose that CNF F takes the values of one on binary inputs

{ai}
p

i 1
, p≥1. Since G does not have variables other than those present in F, we

can find all its values G(ai), and hence values of (F G)(ai) on all these inputs ai,

i=1, …, p. If there exists input b not found amongst {ai}
p

i 1
 such that G(b)=1, then

F(b)=0 and therefore (F G)(b) = 0. This proves the lemma.

Remark 1. The condition imposed in Lemma 1 on G is important. Consider,

for example, F=)101)(101(xxxx and G=)10011(xx . Then F takes the value of one on 2

inputs, while the number of such inputs for F G is 6.

 Main part. For an arbitrary CNF C let us define C1 to be the set (or CNF)

of all those of its EDs containing at least one literal without negation. Further, let

us define C2 to be the set (or CNF) of all those of C’s EDs containing all literals

with negation. Analogously, we can define C3 as the set of all those EDs in C

that have at least one literal with negation. Finally, C4 is defined as complement

of C3, i.e., it is the set of all EDs in C that only have literals without negation.

If at least one of the two pairs (C1, C2), (C3, C4) has an empty component,

then satisfiability check for such CNF C can be performed in polynomial time

equal to its length (in order to verify this condition it is enough to check whether

all EDs have at least one literal with negation and at least one without. Therefore

from now on we will assume that for CNF C in question both pairs (C1, C2) and

(C3, C4) do not contain empty components. We will also make an assumption

that in each ED literals are listed in the increasing order of variable indexes. Thus

in each ED the right-most literal has the maximum index.

If an arbitrary ED consists of m different literals, let us call it m-ED.

We will further assume that considered CNFs do not contain 1-EDs and pure

inclusions of literals [3, p. 69] (i.e., we do not consider CNFs that include only ix

or only ix), because the algorithms for their removal are simple and require linear

time.

3

Remark 2. For a CNF C with the properties just described above, both sets C1

and C3 contain literals on all variables of CNF C, since the set pairs (C1, C2) and

(C3, C4) do not have empty components and CNF C does not contain pure inclu-

sion of literals.

For the purposes of manipulation and comparison of EDs below, let us point

out that r-ED (on n variables) of the form

1 2

1 2
,r

r

a a a

i i i
x x x 11 i < 2 ,ri i n at the initial step is expressed in alphabet

, ,0,1, ,x x as word 1 2
2 2 ,ra a a

rx d i x d i x d i where jd i is the binary

representation of the number ji . The length of jd i is 2log 1ji , thus the

length of this r-ED’s notation is not greater than 22 1 1 .r log n Below

we will assume logarithm base to be 2 and omit it.

All of the algorithms described are deterministic so we will not specifically

state it in each case.

 THEOREM. The satisfiability problem has an efficient deterministic solu-

tion.

Proof. Given some CNF K on n variables expressed in alphabet , ,0,1, ,x x

by a word of length m. Then its number of EDs is not greater than m (as a re-

minder, this CNF does not contain 1-EDs or pure inclusion of literals). Each ED

in K is r-ED, r≥2 (if each ED is a 2-ED, then we have 2-CNF, for which the satis-

fiability problem has an efficient solution [1]). Hence in every ED of this CNF

there is at most n-2 literals missing – on those variables literals on which are not

present in this ED.

If inequality holds

8 log 2,m n (1)

4

then by introducing missing variables we will achieve CNF such that every ED in

it contains literals from all n variables. This manipulation is based upon equiva-

lence)(D)(DD xx , where D is an ED and x a variable from the set of va-

riables literals on which are not included in D.

 Let’s show that this conversion is efficient. First, let’s build ED

1 10 3 ,x x xd xd i xd n (2)

where d (i) is binary representation of number i, 1≤ i ≤ n. This can be done as fol-

lows. As we agreed above, in every ED literals are listed in the ascending order

of variable indexes. Hence pair-wise comparison of variable indexes in the last

literal of each ED will allow to find d(n) in
2logO m n O m steps (each step

here is comparison of two binary digits). Then we keep subtracting 1 from d(n) in

order to obtain ED (2), which will take another
2logO n n O m steps.

In the end, ED (2) will be built in
2O m steps.

Now, moving from left to right, we take the next ED from CNF K, build its dup-

licate (2), which we’ll denote as (2d), and compare all numbers in literals from

“the next ED” to the numbers in literals from its duplicate (2d). For each literal

ax d i from “the next ED” there is a literal xd(i) from (2d). Let’s transform xd(i)

to aX d i (note how we move from lowercase x to uppercase X). To do this, we

will need to compare, for each literal from “the next ED”, binary words of length

O(log n) with at most n binary words of the same length. With each ED having at

most n literals, this will require
3logO n n n O m steps for one ED and

4O m steps for all EDs in CNF K.

 If (2d) still has lowercase letters x, we replace each of them with *. For

example, with n=4 the following expression is possible:

5

1 10 11 100 .X X (3)

Then, in the expression derived from (2d), replace all symbols * with x (here,

x is lowercase and we regard x as a placeholder for zero. To the new expression

(without *), we keep adding 1 (which we’ll denote as lowercase x thus building

all EDs until we arrive at the ED, in which there will only be lowercase x in front

of the binary notations of variable indexes in literals that used to have * to their

left (literals containing uppercase X are not changing).

For example, from (3) we subsequently derive 1 10 11 100 ,x X x X

1 10 11 100 ,x X x X 1 10 11 100 ,x X x X)10011101(XxXx . Expression (3)

represents ED 10 100 ,x x which does not contain literals on the 1
st
 and the 3

rd
 va-

riables. Using the above described method, we have built four EDs, each contain-

ing literals on all variables (although some of them are denoted by uppercase X).

What we have left to do is to find the number of steps required to obtain all

EDs such that each of them contains literals on all n variables. Duplicate EDs (2)

will be written at most m times, each ED having O(n log n) symbols. This results

in
3logO mn n O m steps. Also, each ED in CNF K will yield no more than

22n EDs containing literals on all n variables. At most m EDs in the CNF will

then limit the number of final EDs to m∙2
n-2

. With inequality (1) in mind, we have

2 92nm m .

Then writing all of the final EDs will involve
9 3 12m O m O m steps.

As we see, writing all the EDs containing literals on all n variables can be

done in polynomial time (in the length of CNF K).

 Let us now exclude repeating EDs.

 To do this, we compare the first ED with all the others, marking those that are

equal to it – by making the opening parenthesis bold. In this comparison, we only

6

need to check for equality ax and bx that are found in front of the same binary

string – since literals in each ED are listed in the increasing order of variable in-

dexes (remember, they were derived from ED (2)).

After tackling this first ED, we proceed to the next unmarked ED and compare

it to all the unmarked ones, again marking those that are equal to it. This will re-

quire
18O m comparisons between two n-EDs, and

18 19n O m O m com-

parisons between symbols .ax

Upon completion of this process, all unmarked EDs will be distinct and they

will form perfect CNF. Let the number of these distinct EDs be d. Then if 2nd ,

i.e. when comparing binary notation of d with (2) we find 1 in position (n+1),

then the original CNF is not satisfiable. Otherwise, if d≠2
n
, the CNF is satisfiable.

So, when inequality (1) holds, satisfiability of CNF K is determined in poly-

nomial time (in its length m), equal to the total of all steps outlined above.

We can rewrite (1) in equivalent form:
2 /8

2 .
n

m Then we now have to con-

sider and efficiently solve the satisfiability problem for those CNFs whose length

m satisfies condition

m<
2 /8

2 .
n

 (4)

First, let’s prove that in case n ≤ 26 the satisfiability problem is easily solved.

From (4), we arrive at m<8, i.e., CNF K in question contains at most 7 EDs. Then

sets K1 and K2 (or K3 and K4) will be such that the total of the number of EDs in

them is not greater than 7. Even if the addenda are 3 and 4, it is trivial to deter-

mine in polynomial time whether an executing assembly exists for the given

CNF. Therefore from now on, we’ll assume that n>26, along with inequality (4).

Remark 3. It may seem like the case just considered is not worth attention.

Indeed, if n is bound by a constant, then the computational complexity, as a func-

tion of n, will also be bound, regardless of how quickly that function grows.

7

However, the significance of it is in showing how the efficiency of computation

follows from the properties of partitioning a 7-set. The same properties are at

work if in (1) coefficient 8 is replaced with 16, 32, etc, deriving the similar find-

ings for n=50, n=98, etc. It already follows from here that P ≠ NP is impossible.

Indeed, suppose P≠NP. Then for any deterministic algorithm that checks satisfia-

bility of a CNF, there can be found at least one n such that this algorithm will re-

quire non-polynomial time to check satisfiability of some CNF E with n va-

riables. Then we choose, instead of coefficient 8 in inequality (1), minimal coef-

ficient 2
q
, so that 3∙2

q
 + 2 ≥ n. From here we have (n-2) / 2

q
≤ 3, and thus satisfia-

bility of E can be determined in polynomial time.

 (Another proof of impossibility of P≠NP is given in [4], which also references

a negative review – however, that review later turned out to have errors).

Let us attend to the theorem’s proof. As a reminder, inequality (4) holds and

n>26. For given CNF K, we perform its efficient conversion [1] into 3-CNF H.

This efficient conversion is based upon the following equivalence, in satisfiability

terms:

,x y x z y z

where z is the new variable not found in the set of variables of CNF K. The con-

version is applied to all s-ED, s ≥ 4, that are either in K or created during the

conversion process.

In the 3-CNF H, some 3-EDs and 2-EDs may contain literals both with negation

and without it. Let’s then apply to these EDs the following conversion, which,

again, preserves satisfiability:

1 1

2 2

3 3

,

,

,

i j k i j k

i j k i j k

i j i j

x x x x x y x y

x x x x y x x y

x x x y x y

8

where iy are newly introduced variables, unique to each converted ED.

As a result, we obtain 3-CNF E, which is satisfiability-equivalent to 3-CNF H. In

3-CNF E, every ED contains literals either only with negation or only without it;

we will call E divisible. Note that for divisible 3-CNF E

E2=E3 and E1=E4,

and also from Remark 2 follows

Remark 4. For a divisible CNF E, both sets E1 and E2 contain literals on all va-

riables because any newly introduced variable cannot be a pure inclusion.

 Let’s agree to denote new variables being introduced as iy (in CNF K, we

used variables 1 2, , , nx x x) . Let’s further agree that in all EDs of the 3-CNF E

we write all literals on new variables in the right-most position; if there are more

than one such literal, the right-most position will be taken by the one with the

greatest variable index.

Let CNF E have n+p variables, where p is the number of newly introduced

ones, and E’s length be r. Obviously, n + p ≤ r. It is easy to prove that p and r

have an upper bound that is polynomial in m. Below we will be expressing time

complexities as polynomials in r, hence also polynomials in m, since composition

of polynomials is a polynomial.

Lemma 2. If cardinality of either E2 or E1 does not exceed 8 log r , then sa-

tisfiability of CNF E is determined in time polynomial in r, the length of E.

Proof. Let the above inequality hold for E2 (the case with E1 is considered

analogously).

Let's build set A of all variables, literals on negations of which are present in

all EDs in E2; A is not empty and the number of variables in it is not greater than

t=24 log r . As noted previously, CNF E has n+p variables, where n is the num-

ber of variables ix in the original CNF K and p is the number of yi introduced

during conversion of CNF K into 3-CNF; we also agreed that in the 3-CNF E

9

every ED has the literal on the new variable (if any) written in the right-most po-

sition, if there is more than one such literal (but there can’t be more than three),

then the right-most position is taken by the one with the greatest index. Then if

we consider all EDs in CNF E that contain new variables, pair-wise comparison

of their right-most literals will allow to find binary representation of p: out of two

EDs we choose the one whose right-most literal has a greater index, then the cho-

sen one is compared against next ED and so forth. Comparison of two EDs re-

quires О(log p) steps. Hence we’ll arrive at binary representation of p in

2logO p r O r steps. Then, by subtracting 1 from p and using ED (2), let’s

build the following ED

1 2 1 2 ,x x xd i xd n y y yd j yd p (5)

where d(s) has the same meaning as in (2). This process will take

2log logO p p O n n O r steps.

Finally, let’s build duplicate ED (5), which we’ll denote (5d), in
2O r steps.

For each ED in E2, we’ll mark in (5d) those xd(i) or yd(j), literals on which the

ED contains. This will require
23r O d n d p O r steps. If upon com-

pletion, (5d) has unmarked literals, we delete them in O(r) step, eventually ob-

taining ED

1 2 1 2 ,k sxd i xd i xd i yd j yd j yd i (6)

which contains literals on all variables from A (here, ,t qi n a j p).

 Let’s now move onto the important issue of finding all possible subsets of set

A, besides the empty set – there’ll be no more than 2 1t < 24r such subsets. For

this, we’ll employ algorithm suggested in [5, p.34], which is based on binary no-

tation. First, we create (k+s)-long binary assembly with a single 1: (0, 0,.., 0, 1).

10

Then we build all the other ones, of the same length, by adding 1 (in binary) to

the previous assembly – until we have 1’s in all (k+s) positions.

When building the first assembly, we look through the literals in ED (6) from

right to left and upon encountering literal syd j , write 1, along with a comma

to its left and closing parenthesis to its right; then we write all the zero compo-

nents upon encountering zd(s) (where z is either x or y). Thus the first assembly

will take O(k+s)=O(r) steps to build. Addition of 1 will require O(r) steps. In the

end, all the aforementioned binary assemblies will be built in 252t O r O r

steps.

Lastly, we need to set all variables in every subset of A to 0, and the remain-

ing variables in CNF E to 1. To do this, we take one of the created binary assem-

blies and consider it side-by-side with ED (6), writing out those literals from (6)

whose positions correspond to 1’s in the assembly. Then we build duplicate ED

(5), which will have literals identical to those we have just written out. In those

literals, let’s replace variables with uppercase letter O. For example, we may ar-

rive at expression like (x1 O10 x11… xd(n-1) Od(n) O1 y10…yd(p)); in these ex-

pressions, lowercase x and y will be regarded as 1’s. With these conventions, we

have a set of values for all variables in CNF E, where zero values (uppercase O’s)

are assigned only to variables derived using the specific chosen binary assembly

of the length k+s.

Let’s count the number of steps needed to obtain all sets of values for va-

riables in CNF E. Writing out all the relevant literals when considering side-by-

side one binary assembly and ED (6) takes O(d+s)=O(r³) steps. Hence building

all sets will take
24 3 27r O r O r steps.

Once we’re done creating this set of inputs, we need to find the value of CNF

E on these inputs and pay attention to those, on which E is 1. To find the value of

11

E on one input, requires comparison of one binary word, at most 3∙O(log r) long,

with at most 3r words of the same length, which will take O(3∙ log r ∙3r)=O(r
2
)

steps. Then the number of steps required to find the value of E on all inputs is

24 2 26r O r O r .

Let’s now make sure that the above algorithm will find the executing assem-

bly for 3-CNF E, if one exists. According to Remark 2, for given divisible 3-CNF

E both sets E1 and E2 contain literals on all variables, with E1 containing all lit-

erals without negation, E2 – all literals with negation. This means that executing

assembly for E must contain both 0’s and 1’s. Our algorithm goes through all

possible sets of variables in literals of E2, and all these variables are assigned the

value of 0. Then if the CNF is satisfiable, we will find all the variables whose

values in the executing assembly are 0. Lastly, let’s note that the subset of va-

riables with the value of 1 (which is a complement of the set of “zero variables”)

will yield 1 in all EDs in E1 – assuming there exists an executing assembly for E.

Thus we have shown that the executing assembly, if it exists, will indeed be

found. Since all time complexities we’ve outlined are polynomial in r (the maxi-

mum one being
27O r), and sum of polynomials yields a polynomial, this con-

cludes the proof of the lemma.

Let us attend to the final step in proving the theorem. If either E2 or E1 is such

that the condition of Lemma 2 holds, we are done. Otherwise, we will use the fol-

lowing algorithm to find the executing assembly of E.

Let’s partition E2 into classes Ei so that for each i (except, perhaps, one)

8 log ;iE r the number of such classes is v(r)=O(r / log r). Then according to

Lemma 2, we can efficiently solve the satisfiability problem for each CNF E1 ˄

Ei obtaining T(i) – sets of executing assemblies – in the process, which will re-

12

quire 27 28v r O r O r steps (as a reminder, 27O r is the highest-power

polynomial from Lemma 2 proof). If any of the T(i) is empty, E is not satisfiable.

Suppose none of the T(i) is empty. Then for each pair a and b from T(1) and

T(2) respectively, we build binary assembly c, whose components are conjunc-

tions of the relevant (i.e., those in the same position) components in a and b. All

such binary assemblies c collectively form set D˄(1). (From now on, we’ll call

assemblies c conjunctive; if a and b are the same, their conjunctive assembly is

equal to either of them). Since cardinality of each T(i) is not greater than r
24

, car-

dinality of D˄(1) cannot be greater than r
48

. To obtain one conjunctive assembly,

we’ll need O(log r) steps (we go through pairs of components in a and b one-by-

one, performing conjunction on them). Thus building D˄(1) will take O(r
49

)

steps.

For each such set D˄(1), we check satisfiability of CNF E1˄E1 E˄2, coming

by D(1), the set of all executing assemblies. Since checking one input of E for sa-

tisfiability requires O(r∙logr) = O(r
2
) steps, D(1) will be built in r

48
∙O(r

2
)=O(r

50
)

steps. From Lemma 1, we have |D(1)| ≤ |T(1)|, as E1 and E2 contain all variables

found in CNF E. If D(1) is empty, then E is not satisfiable; if D(1) is not empty

and i=2, then E is satisfiable and the proof is concluded.

If D(1) is not empty and i≥3, then we build set D˄(2) of all conjunctive as-

semblies from the assemblies found in D(1) and T(3). For each such assembly,

we check satisfiability of CNF E1˄E1 E˄2 E˄3, denoting the set of all executing

assemblies as D(2) (again, from Lemma 1: |D(2)|≤ |D(1)|) and so forth.

Building one set D(i) takes O(r
50

) steps. The number of sets D(i) is v(r) –2,

and cardinality of each of them is not greater than r
48

. Then building them all will

take (v(r) –2)∙O(r
50

)=O(r
51

) steps. If at least one of them is empty, CNF E is not

satisfiable, and satisfiable otherwise. Since all time complexities outlined are po-

13

lynomial, and the sum of polynomials is a polynomial, we have thus proved the

theorem.

Satisfiability problem is known to be NP-complete, hence we arrive at the

COROLLARY. NP = P.

References

1. Гэри М., Джонсон Д. Вычислительные машины и труднорешаемые

задачи. М.: Мир, 1982

2. Мощенский В.А., Тихоненко Т.П. // Вестник БГУ. Сер. 1. 1999. N 1

3. Чень Ч., Ли. Р. Математическая логика и автоматическое доказатель-

ство теорем. М.: Наука, 1983

4. Мощенский В.А. Из неравенства классов NP и P вытекает противо-

речие // Международный конгресс по информатике: информационные

системы и технологии. Часть 2. Мн.: БГУ, 2011, сс. 318-320

5. Липский В. Комбинаторика для программистов. М.: Мир, 1988

6. Мощенский В.А. Подсчет числа нулевых наборов и проблема выпол-

нимости. Мн.: Изд. центр БГУ, 2005

