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DYNAMIC LOAD EFFECT IN THE VICINITY  
OF GOAFS WITHIN ROCK MASSES 

M. A. Zhuravkov and A. V. Krupoderov UDC 622.83; 539.3 

The problems of the concentrated-dynamic-load effect in an elastic isotropic space containing a spherical 
enclose in an elastic isotropic plane with a circular hole were solved. 

Elastic space, elastic plane, concentrated force 

INTRODUCTION 

Investigation into the state of rocks under mining-induced or natural dynamic loading in the 
vicinity of a goaf involves a class of actual problems of the current geomechanics. The present authors 
report solution of model problems on evaluation of the stress-strain state (SSS) of a disturbed rock 
mass containing a goaf under the acting impulse load, which may result from either dynamic events, 
explosions, or other reason.  

Mostly, a goaf’s shape can be approximated as a circular one in the case of a plane problem 
statement, or as a spherical surface, whereas the daylight surface effect can be neglected. In terms of 
Saint-Venant principle, the disturbance source effect on a rock mass with a goaf can be modeled as a 
concentrated force if this disturbance source is at a rather large distance from the goaf. 

MODEL PROBLEM SOLUTION 

Consider problems of the dynamic concentrated force effect in an elastic isotropic medium with a 
spherical enclosure when the force direction coincides with radius-vector of its application point, and in 
an elastic isotropic plane with a circular hole under the arbitrarily directed force. Let the force application 
point be at distance aR from the center of a mine working of radius R, where a be a dimensionless 
parameter. Coordinates for 3D case are: the origin is in the sphere center, axis 3x  coincides with radius-
vector of the force application point, two other axes are normal to the third one. Respectively, in 2D case 
the origin of coordinates is in the center of hole, axis 1x  superposes with radius-vector of the force 
application point, axis 2x  is normal to it, M is dimensionality of the problem. 

The resulting system for the formulated model problems involves the Láme equations: 
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and for 2D case (j indicates force direction); 
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boundary conditions are written in spherical βϕ,,r  and polar coordinates α,r : 
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Attenuation conditions should be fulfilled at infinity: 
 0,

∞→
→

rruuβ ,   M = 3;     0,
∞→

→
rruuα ,   M = 2. (3) 

Assume that initial disturbances are absent: 

 0| 0 ==tuβ ,   0| 0 ==tru ,   0| 0 ==tuβ& ,   0| 0 ==tru& ,    M = 3,  

 0| 0 ==tuα ,   0| 0 ==tru ,   0| 0 ==tuα& ,   0| 0 ==tru& ,   M = 2. (4) 

Let us describe the solution of the formulated model problems. First, we solve the problem on the 
concentrated force in the infinite space (plane). The similar model problems are described by the 
equations (1), boundary conditions (3) and initial conditions (4). Denote displacement components for 
the obtained solutions of such problems as 1

iu .  
Next, consider the problem of the boundary disturbance propagation from hole in the infinite space 

and in the plane with no acting mass forces, characterized by a specific kind of boundary conditions. 
Denote displacement components for these solutions as 2

iu . 
This problem is described by the equations (in terms of the plane problem): 
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complemented with the conditions (3) and (4).  
So, solution of the model problem is 21

iii uuu += . 
Solution of the first of additional model problems is a dynamic analog of Kelvin’s fundamental 

solution [1] and in general can be written as [2]: 
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where H is Heaviside function, σ  is delta function, ijσ  is bivalent mixed tensor.  

Calculating integral convolutions, find: 
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At M = 2 for (5) we have: 
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When considering the second model problem, it is more convenient to take the following 
dimensionless parameters: 
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Mathematical statement of the second model problem in dimensionless coordinates is as follows: 
M = 3:  
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Hereinafter omit symbol “wave” in dimensionless parameters. 
The solution procedure for the formulated mathematical problems (7) is described in [2]. In turn, the 

Laplace transformation based on the solution of sets (7) can be written as ( 11 =γ , ηγ =2 ): 
for M = 3: 
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where nP , 2/3
1−nC  are Legendre and ultra-spherical polynomials,  
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And for M = 2: 
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nK  is modified Bessel’s function of n-th order. 
Fulfilling the Laplace transformation of (8) and (9), we obtain the solution of the second model 

problem concurrently with the solution of initial model problems.  
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SOLUTION OF THE SECOND PROBLEM 

First, we find coefficients of the Fourier series )(~ tqkn . Analytical derivation of these coefficients 
for a plane problem is rather difficult. Interpolation was used. For spatial problems we can find these 
coefficients through computer algebra. As the analytical conversion of the Laplace transformation was 
impossible in the plane case, the approximated inversion was fulfilled by formulae cited in [3]. Based 
on the properties of the Laplace transformation [2], the complete inversion (8) and (9) is performed by 
numerical convolution.  

EXAMPLES OF THE PROBLEM SOLUTIONS 

Dimensionless parameters are used in solving the problems cited below. 
Example 1. Consider the action of concentrated force, which time dependence has a shape of 

triangular impulse: 
 ))1()1()2/1()2/1(2)((10)( 12 −−+−−−= τττττττ HHHf , N. 

Points of the force application are at a distance of 10 radii from the center of an underground void 
(mine working) simulated by a sphere. The sphere surface is stress-free. We took the data on the 
potassium salt mass: the mine working radius, 3=R  m; Young modulus 10=E  GPa, Poisson’s ratio 

3.0=ν ; density 2200=ρ  kg/m3. The first six terms of the series (7) and (8) are taken to plot the 
solution, namely, 021 == αα , 121 == ββ . 

The radial and tangential displacements within rocks between the disturbance source and the mine 
working boundary are shown in Fig. 1; the same for the mine working contour is in Fig. 2. 

Example 2. Consider action of a concentrated force on a rock mass with a spherical enclosure. The 
functional time dependence of the force is expressed as “smoothed” triangle impulse: 

 ))1()()())2/1))(2/1(1616(4((10)( 212 −−−−+−+= ττττττ HHf , N. 

 
Fig. 1. Displacements in rock mass at r = 2 
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Fig. 2. Displacements at mine working contour 

The point of the force application locates at distance of 10 radii of the sphere from its center. 
Consider a working with a stiff fill: the fill material has stiffness few times higher than that of the rock 
material. The values used in the first example are taken as initial ones. 

Calculation data for this model problem are shown in Figs. 3 and 4. 

 
Fig. 3. Stresses at mine working contour 
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Fig. 4. Stresses in rock mass at r = 2 

Example 3. Examine a probable arise of failure zones in a rock mass with a goaf under action of 
concentrated force. Different criteria of dynamic failure are elaborated and practiced [4]. Let us employ 
a generalized form of the simplest one сσσσσ =},,max{ 321 , where 321 and, σσσ  are principal 
stresses cσ  is compressive strength. In this case we take dimensionless value cσ  = 0.00032. 

Apply the above criterion to the calculation data for the second model problem. At 0=β  stress 

rrσ  is principal. Curve for rrσ  at the mine working contour and straight line for crr σσ 1000=  are 
shown in Fig. 5.  

Thus, the failure is to occur at the working contour under load 1000 times lower than that, cited in 
example 2, namely, 910 N. It can be concluded from the analysis of the stress state of the study rock mass 
at the section between a failure source and a mine working that the failure in this very area is also 
possible under load 500 times lower than the magnitude reported in the example. 

Example 4. Examine the concentrated force action in an elastic space with a circular hole. 
Direction of the force action coincides with the radius-vector of the force application point, its 
functional time dependence is a triangle impulse: 

 ))1()1()2/1()2/1(2)((10)( 9 −−+−−−= τττττττ HHHf , N.  

 
Fig. 5. Comparison of rrσ  with the limit value 
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Fig. 6. Radial displacements at r = 2 

The point of the force application is at a distance of 5 radii from the center of working modeled as a 
circle with a stiffly fixed boundary. The source data correspond to the potassium salt mass: 3=R  m, 

10=E  GPa; 3.0=ν ; 2200=ρ  kg/m3. 
The first seven terms of the series (8′) and (9′) were taken and 121 == αα , 021 == ββ .  
The radial displacements at distance of two radii from the mine working center are demonstrated 

in Fig. 6. 

CONCLUSION 

The model problems discussed in the present paper have wide scope of application as mineral 
exploitation severely disturbs dynamic equilibrium of environment. 

In the recent years we observe a strong and growing interest in the investigations into dynamic 
phenomena of a wide intensity range in mining areas all over the world. One of promoting factors is the 
greater frequency of “large-scale catastrophic events” in regions with the developed mining industry. 
The large-scale extraction of rocks induces considerable changes of their stress state, which works as 
the background for dangerous rock pressure manifestations, intensive fracturing, motions along faults, 
and so on. 

To identify stresses and strains caused by mining, and conditions for release of accumulated energy 
is of prime importance to predict production-induced catastrophes. The safe exploitation of mineral 
resources in complex areas, in particular, requires development of models to describe properly the 
respective processes and their manifestations. 
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