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A new mechanism of the instability of an electron (positron) beam under conditions of the parametric X-rays is discov- 
ered. Equations, which define the amplitude increment of the instability and the starting current, are obtained. It is shown 
that a considerable part of the particle energy transforms into coherent X-ray energy due to this parametric instability. 

Known schemes of  coherent X-ray and gamma-ray 
sources are basically connected with the creation of  
the conditions, when resonant transitions of  MSss- 
bauer nuclei or the internal electron shell of  heavy 
atoms have an inverse population. It was shown in 
refs. [1,2] that these conditions were realized for a 
relatively small threshold current (j ~ 10 2 A/cm2), 
when parametric X-rays [2,3] from the modulated 
electron beam were used. But in this scheme a solu- 
tion of  the very complicated problem of X-ray modu- 
lation of  the ultrarelativistic particle beam is re- 
quired. 

An essentially different mechanism of the coher- 
ent X-ray generation is considered in the present 
paper. It is shown that parametric X-rays lead to lon- 
gitudinal self-modulation of  the relativistic chan- 
nelled particle beam and as a result the parametric 
beam instability arises. In this process the longitudi- 
nal energy of  the particles efficiently transforms into 
the energy of  the coherent monochromatic X-rays. 
The mechanism considered is in many aspects analo- 
gous to the processes which are used in the powerful 
generators of  superhigh-frequency radiation and free- 
electron lasers [ 4 - 7 ] .  

The interaction of  the channelled particle beam 
with a radiation field and the crystal is described by 
the following self-consistent system of  the Maxwell 
equations and the particle's equations of  motion 

k 2 ~ ~(k, 60) - k~(k. ~)  

_ 602 ~ ea#(k, kr ' 60) 6#(kr,  60) 
7" 

= 4 r r i 6 0 ] a ( k  , 60) ,  

m dt)i/dt - 7-1F(ri)  

(1) 

= --(e/~/) [~(ri, t) + uiX B(ri, t) - ui(• i. ~ ) ] ,  (2) 

/ i = c = l ,  e 2 = 1 / 1 3 7 ,  k r = k + x ,  7 = E / m ,  

where r i and o i are the coordinate and velocity of  the 
ith particle of  the beam; E( t )  is the total energy of  
the particle at the time t; e~#(k, kr; 60) are the Fou- 
rier components o f  the dielectric constant of  the crys- 
tal [2] ; * is the reciprocal lattice vector of  the crys- 
tal, ~ (r, t) is the electric radiation field: 

~(r, t) = f dk  d60 £(k ,  60) exp( ik . r  - i60t), 

and j(r, t) is the current density which may be writ- 
ten as 

j ( r , t )  = e ~. oi6 [ r - r i ( t ) ] .  
l 

(3) 

Let us consider the simplest case of  planar chan- 
nelling, when the interplane potential is periodic 
along the X-axis with period d (see fig. 1). Then the 
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Fig. 1. Arrangement of the crystal, particle beam and radiation 
field. 

equation of  motion of  the particle in a channel has 
the form 

ri(t ) = o 0 t + exXi(t  ) + rio , 

F(ri) = - e  x 3U/3xi ,  e 2 = 1, (4) 

where rio and o 0 are the initial coordinate and veloc- 
ity of  the ith particle and v 0 is directed along the Z- 
axis. 

In order to investigate the considered instability of  
the system in accordance with the general theory 
(see, for example, refs. [ 4 -7 ] ) ,  one has to solve 
eqs. (1), (2) in a linear approximation under the ra- 
diation field ~(r ,  t) and to find the dispersion equa- 
tion which defines the propagation of  the eigenwaves 
in the crystal with the channelled electron (positron) 
beam. In the zeroth-order approximation the motion 
of  the channelled particle Xo(t ) is periodic with fre- 
quency 6% depending on the transversal particle ener- 

_1 2 gy e - I E v  x + U(xo). The oscillation phase is arbitra- 
ry and therefore the average current connected with 
the function Xo(t ) is equal to zero. With this motion 
only spontaneous channelling radiation occurs, which 
is incoherent, with intensity being proportional to the 
first order of  the particle current [8]. 

But if one takes into account the first-order cor- 
rection x(1)(t), connected with the interaction of  the 
particle with the radiation field of  frequency co, lon- 
gitudinal modulation of  the beam arises. As a conse- 
quence the Fourier component of  the current/(1)(co) 
is nonzero and, in its turn, leads to coherent radiation 
with intensity proportional to [/(1)] 2. The beam in- 

stability is caused by such an interaction between par- 
ticles and radiation field. 

Let us consider this process quantitatively. The 
first-order correction x(1)(t) is defined by the follow- 
ing expression averaged over the initial phase of  the 
oscillation 

x(l)(t) -- iew 0 f d k d ~  exp(ik-r0)  exp( if2kt ) 

x {[~k/w v2l ¢x(k, w) + vo(kx/cO) dz(k, co)) 

X ~ ( ~ n  nlXnl 2 l ) 
• i (~  k ncoo) u '  

-2 ~w2n21xn l2 .  (5) ~2 k = co - k z v O, v x = 
n 

Using formula (5) in eq. (3) one can calculate the cur- 
rent and charged density of  the beam 

L~ 1) =noe2~o[(~/c° v2) G- +~o(~/~°) ez] 

3 ( ~  n n2lxn 12 ) 
X~ee C°O i (~  k - n w O ) - l s  ' (6) 

/z (1) = noe2c°O {[Rk ~co - v2] Cx + °o(kx/C°) ~z } 

X~e(~  n kxvOnlxnl2 ) p(t) o~l/z  (1) , 
i(~2 k - nco0) - . . ;  

and the Maxwell equation (1) transforms as follows: 

k 2 ~ ( k ,  co) - ka(k" ~,) 

co 2 ~ e ~ ( k ,  kr, w) ~ ( k r ,  w) 
T 

- co2oao(k, co) 6t3(k, co) = 0, (7) 

where the quantities 8,~ + %¢(k,  co) define the di- 
electric constant of  the beam, 

Oxx = X(~k l~  - v 2) A, Oxz = Xvo(kxl~ ) A, 

Ozz = kvo(k21co)(~kvO - kzl72) A 1 , 

°zx = x G  [~k Vo - kzlV2)] (~kl  ~ - vZ)x AI , (8) 

X : 4ne2n0 co0/mTco 2 : (Wp2/Co 2) co 0 , 
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~ k  - nc°o + i v /  

) 
A 1 = E - ~  ~ .2k-_-~-o+i  v , 

7 - 2 = 1 , o  2 ' v = L  - l ,  

where L is the length of the crystal; n O is the particle 
density of the incident beam;x n is the Fourier com- 
ponent of the function x 0 (t) corresponding to the 
frequency n 600, from the quantum point of view this 
value coincides with the matrix element of the coor- 
dinate operator between t_he energy bands of the 
channelled particle [9] ; o 2 is the square of the parti- 
cle transversal velocity averaged on the oscillation 
phase; Wp is the plasma frequency of the beam. The 
electron beam is an anisotropic medium, because the 
transversal and longitudinal motions of the electrons 
are not equivalent. As a result the dielectric constant 
tensor is nondiagonal and the electromagnetic field is 
nontransversal in the medium. But we shall see later 
that the components Oxz, Ozx and Ozz may be ne- 
glected for real values of the beam current. 

Let us use now the two-beam approximation of 
the dynamical theory of X-ray diffraction for the so- 
lution of eq. (7). Choose the geometry of the prob- 
lem in such a way that the oscillation direction (X- 
axis) is perpendicular to the diffraction plane, formed 
by the vectors k and x (fig. 1). Then the above-men- 
tioned dispersion equation has the form 

[ k2 - 602( 1 +go)] [ k2 - 602( 1 +gl)] - 604gr g - r  

= c°2[ k2 - e°2( 1 +gl)] 

6020x z O zx - ) (9) 

X Oxx + k 2 _ 6o2( 1 +go) - c°2°zz ' 

where g o , g l , g r  are defined by the crystal dielectric 
constant tensor e~t 3 and are directly connected with 
the amplitude of the photon coherent scattering on 
the crystal atoms and nuclei [2]. 

One can easily estimate that the refraction of the 
emitted photons by the crystal is more essential than 
the latter by the particle beam w h e n / ~  10 8 A/cm 2. 
It means that igxl ~ II%~ll and the term ~o2t~ in eq. 
(9) can be neglected. As a result the instability de- 

pends on the component Oxx only. 
Let us f'trst consider the condition of instability in 

the case when the radiation frequency does not satis- 
fy the parametric radiation condition [2,3] and the 
photon diffraction is not essential. In this case eq. 
(9) has the form 

k2 - 602( 1 +go) 

= 600 60p [~k160 -- "~x] 
[X 1 [2(60600 - k 2) a60 0 

(60 -  kzvo - 600 +iv) 2 3e ' 

(10) 

which is typical of the theory of plasma superhigh- 
frequency generators [5] and the free-electron laser 
[7]. But the radiation spectrum of the system consid- 
ered is continuous because of the absence of a resona- 
tor. According to the general theory of such equa- 
tions [5-7] the beam instability with respect to elec- 
tromagnetic radiation takes place near the resonant 
values 60r and kzr which are solutions of the follow- 
ing equations 

k2 - 602( 1 +go) = 0, (11) 

w -  kzo 0 -600  = 0. (12) 

The amplitude increment of the instability is de- 
fined by the imaginary part 6 = Im k z (w)  of the so- 
lution of eq. (10) and is 

8 = - ~ v r 3 Q  1/3, 

E 60 2 600 a60o 
1 2 ( 6 0 0 %  . Q = ~ ( a k / 6 0 r - o x , l x  1 ae " 

(13) 

The starting current/s (the self-excitation condi- 
tion) is defined by the following inequality 

181 Lab s > 1, [611260 r Img0(60r)] -1 > 1, (14) 

where Lab s is the absorption length for the radiation 
with frequency 60r" One can find from eqs. (13),(14) 
the following estimation for the current 

Js ~ 1012A/cm2, when 60r = 10 keV, 7 = 100. 

This estimation shows that coherent X-ray generation 
from the channelled particles is not realized in prac- 
tice in the case considered. But an essentially differ- 
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ent result is obtained when the parametric X-ray con- 
dition is satisfied [2,3]. In this case the emitted pho- 
tons are diffracted by the crystal and the resonant 
values co r and kzr satisfy both  eqs. (11), (12) and the 
Bragg condition 

( k + ~ )  2 = k  2. (15) 

As a consequence co r and k r are unequivocally de- 
fined by eqs. (11), (12), (15) and the amplitude in- 
crement of the parametric instabili ty and the self-ex- 
citation condit ion are obtained from the general 
equation (9) in the form 

6 = 2 -  1/2(Qco r [go[) 1/4, 

1 [6](,,,9r1 [ im(g  0 _ ~ ) ] - 1  > 1 (16) 

One can find the following estimation from eq. (16) 
under the above-mentioned conditions: 

ls ~ 10 7 A/cm 2 . 

Such a value of  the current density is realized in the 
current bunches of  modern accelerators. 

The physical reasons for the decrease of  the start- 
ing current are: 

(a) if  the parametric X-ray condit ion (15) is ful- 
filled, the crystal is actually a resonator for the 
emitted photons and this fact permits one to realize 
the one-mode generation regime; 

(b) the spectral density of  the radiation for the 
parametric X-rays is essentially higher than the latter 
for the channelling radiation [2] ; 

(c) the radiation absorption length is increased in 
the parametric X-ray condit ion because of  the Borr- 
mann effect [2]. 

The greatest transformation of  the longitudinal 
energy of  the particle into the radiation energy under 
the instability condition is caused by capture of the 
particles in the potential  pits of  the progressive 
radiation waves [5]. It is possible when the particle 
velocity v 0 is greater than the X-ray phase velocity in 
the crystal. According to ref. [2] this condition is ful- 
filled when the particle energy is 

E > E  0 = m[g0]- 1/2. 

Then the greatest energy of  the coherent X-rays 
emitted by a particle is Era d = E -- E 0. A detailed cal- 
culation of  the considered generator efficiency de- 
mands the investigation of  the non-linear solution of  
the general equations (1), (2). 
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