Краткие сообщения

УЛК 519.8

Е.Е. ГУРЕВСКИЙ. В.А. ЕМЕЛИЧЕВ

МЕРА УСТОЙЧИВОСТИ ЛЕКСИКОГРАФИЧЕСКОГО ОПТИМУМА ВЕКТОРНОЙ ЗАДАЧИ ЦЕЛОЧИСЛЕННОГО ЛИНЕЙНОГО ПРОГРАММИРОВАНИЯ В СЛУЧАЕ НОРМЫ ГЁЛЬДЕРА

Using Helder inequality we derive the stability radius formula for the lexicographic optimum of the vector integer linear programming problem in l_v -metric.

Пусть $C = [c_{ij}] \in \mathbf{R}^{m \times n}$, $m \ge 1$, $n \ge 2$, $x = (x_1, x_2, ..., x_n)^T \in X \subseteq \mathbf{Z}^n$, |X| > 1, C_i — i-я строка матрицы C, т. е. $C_i = (c_{i1}, c_{i2}, ..., c_{in})$, $i \in N_m = \{1, 2, ..., m\}$. Постановка векторной (m-критериальной) задачи целочисленного линейного программирования (ЦЛП) предполагает задание на множестве решений X векторного критерия Cx с частными критериями $C_ix \to \min_{x \in X}$, $i \in N_m$. Исследованию различных видов устойчивости решений такой задачи с разнообразными принципами оптимальности посвящено большое количество работ (см., например, [1-6]). В данной статье рассматривается векторная задача ЦЛП $Z^m(C)$ с лексикографическим принципом оптимальности, т. е. задача поиска лексикографического множества $L^m(C) = \{x \in X : \forall x' \in X \ (Cx \succ Cx')\}$, где \succ - отрицание бинарного отношения \succ , которое задается в критериальном пространстве \mathbf{R}^m следующим образом: для любых двух различных векторов $y = (y_1, y_2, ..., y_m)$ и $y' = (y_1', y_2', ..., y_m')$ из \mathbf{R}^m справедлива формула $y \succ y' \Leftrightarrow y_k > y_k'$, где $k = \min\{i \in N_m : y_i \neq y_i'\}$. Элементы множества $L^m(C)$ называются лексикографическими оптимумами (ЛО).

Для всякого натурального числа κ в действительном пространстве \mathbf{R}^k зададим норму Гёльдера $(l_p) \parallel y \parallel_p = \left(\sum_{j \in N_k} \mid y_j \mid^p\right)^{\frac{1}{p}}, \ 1 \leq p < \infty$. Будем также использовать чебышевскую норму $(l_\infty) \parallel y \parallel_\infty = \max\{\mid y_j \mid : j \in N_k\}$. Как известно, норма l_p в \mathbf{R}^k и норма l_q в сопряженном пространстве $(\mathbf{R}^k)^*$ связаны равенством $\frac{1}{p} + \frac{1}{q} = 1$ при 1 , кроме того, <math>q = 1 при $p = \infty$, $q = \infty$ при p = 1. В дальнейшем будем считать, что областью изменения чисел p и q является интервал $[1,\infty]$. Под нормой матрицы будем понимать норму вектора, составленного из всех ее элементов.

По аналогии с [4-6] радиусом устойчивости ЛО $x^0 \in L^m(C)$ в пространстве с нормой l_p назовем число $\rho_p^m(x^0,C) = \sup\{\varepsilon > 0 : \forall C' \in \Omega(\varepsilon) \ (x^0 \in L^m(C+C'))\}$, если $\Omega(\varepsilon) \neq \emptyset$, и $\rho_p^m(x^0,C) = 0$, если $\Omega(\varepsilon) = \emptyset$. Здесь $\Omega(\varepsilon) = \{C' \in \mathbf{R}^{m \times n} : \|C'\|_p < \varepsilon\}$.

Лемма 1. Если число $\phi > 0$ и решения $x \neq x^0$ таковы, что выполняется неравенство

$$C_1(x-x^0) \ge \varphi \|x-x^0\|_{\alpha},$$
 (1)

то для любой матрицы $C' \in \Omega(\phi)$ справедливо соотношение $x \notin L^m(C+C')$.

Действительно, пусть, напротив, существует такая матрица $C' \in \Omega(\phi)$, что $x \in L^m(C+C')$. Тогда верно неравенство $(C_1+C_1')(x-x^0) \leq 0$. Поэтому, используя неравенство Гёльдера, легко выводим $C_1(x-x^0) \leq \|C_1'\|_p \|x-x^0\|_q < \phi \|x-x^0\|_q$, что противоречит (1).

Лемма 2. Если число $\eta > 0$ и решения $x \neq x^0$ связаны условием

$$C_1(x-x^0) < \eta || x-x^0 ||_q,$$
 (2)

то при любом числе $\varepsilon > \eta$ существует такая матрица $C' \in \Omega(\varepsilon)$, что $x^0 \notin L^m(C+C')$.

Доказательство. Если р = I, то, зафиксировав индекс $s=\arg\max\{|x_j-x_j^0|:j\in N_n\}$, зададим элементы матрицы $C'=[c'_{ij}]\in \mathbf{R}^{m\times n}$ по правилу $c'_{ij}=\eta \, \mathrm{sign}(x_j^0-x_j)$ при i=I,j=s и $c'_{ij}=0$ при остальных индексах i,j. Если p>1, то элементы матрицы $C'=[c'_{ij}]\in \mathbf{R}^{m\times n}$ определим формулой

$$c_{ij}' = \begin{cases} \eta \frac{|x_j - x_j^0|^{q-1}}{\|x - x^0\|_q^{q-1}} \text{sign } (x_j^0 - x_j), & \text{если } i = 1, \ j \in N_n, \\ 0, & \text{если } i \neq 1, \ j \in N_n. \end{cases}$$

После несложных преобразований убеждаемся, что в обоих случаях справедливы равенства $\|C'\|_p = \eta$ и $C_1'(x-x^0) = -\eta \|x-x^0\|_q$. Поэтому $C' \in \Omega(\epsilon)$, и с учетом (2) выводим $(C_1+C_1')(x-x^0) = C_1(x-x^0)-\eta \|x-x^0\|_q < 0$. Следовательно, $x^0 \notin L^m(C+C')$. Лемма 2 доказана.

Теорема. При любых $m \ge 1$ и $1 \le p \le \infty$ для радиуса устойчивости JIO x^0 векторной задачи ЦЛП $Z^m(C)$ справедлива формула

$$\rho_p^m(x^0, C) = \min_{x \in X \setminus \{x^0\}} \frac{C_1(x - x^0)}{\|x - x^0\|_q}.$$
 (3)

Доказательство. Для краткости правую часть формулы (3) обозначим ϕ . Очевидно, что $\phi \ge 0$

Сначала докажем неравенство $\rho_p^m(x^0,C) \ge \varphi$. Не уменьшая общности, будем считать, что $\varphi > 0$. В соответствии с определением числа φ для любого решения $x \ne x^0$ справедливо неравенство (1). Поэтому согласно лемме 1 $x \notin L^m(C+C')$ при $C' \in \Omega(\varphi)$. Отсюда $x^0 \in L^m(C+C')$. Следовательно, $\rho_p^m(x^0,C) \ge \varphi$.

Далее покажем, что $\rho_p^m(x^0,C) \leq \varphi$. Пусть $\varepsilon > \varphi$ и решения $x^* \neq x^0$ удовлетворяют равенству $\varphi \parallel x^* - x^0 \parallel_q = C_1(x^* - x^0)$. Тогда очевидно существование числа η с условиями $\eta > C_1(x^* - x^0) \parallel x^* - x^0 \parallel_q^{-1}$ и $\varepsilon > \eta > \varphi$. Поэтому в силу леммы 2 существует такая матрица $C^* \in \Omega(\varepsilon)$, что $x^0 \notin L^m(C + C^*)$. Следовательно, $\rho_p^m(x^0,C) \leq \varphi$. Теорема доказана.

Ввиду формулы (3) очевидно утверждение: если радиус устойчивости $\rho_p^m(x^0,C)$ больше нуля, то он положителен при любой норме l_p . О таком ЛО x^0 будем говорить, что он устойчив. Таким образом, из теоремы вытекает

Следствие. ЛО x^0 векторной задачи ЦЛП $Z^m(C)$, $m \ge 1$, устойчив тогда и только тогда, когда он является единственным оптимальным решением скалярной задачи $\min\{C_1x:x\in X\}$.

В заключение отметим, что аналогичное исследование радиуса устойчивости паретооптимального решения векторной задачи ЦЛП в случае нормы Гёльдера проведено в [4].

Работа выполнена при финансовой поддержке БГУ в рамках межвузовской программы «Фундаментальные и прикладные исследования» Республики Беларусь.

- 1. Сергиенко И.В., Козерацкая Л.Н., Лебедева Т.Т. Исследование устойчивости и параметрический анализ дискретных оптимизационных задач. Киев, 1995.
- 2. Сергиенко И.В., Шило В.П. Задачи дискретной оптимизации. Проблемы, методы реше□ ния, исследования. Киев, 2003.
- $3.\,Emclichev\ V.A.,\ Girlich\ E.,\ Nikulin\ Yu.V.,\ Podkopacv\ D.P.\,II\,Optimization.\,2002.$ Vol. $51.\,Me\,4.\,P.\,645.$
 - 4. Емеличев В.А., Кузьмин К.Т. II Кибернетика и системный анализ. 2006. Т. 42. № 4. С. 175.
 - 5.Емеличев В.А., Кузьмин К.Г.// Докл. НАН Беларуси. 2006. Т. 50. № 2. С. 5.
- 6. Emelichev V.A., Krichko V.N., Nikulin Yu.V.//Control and Cybernetics. 2004. Vol. 33. No 1. P. 127.

Поступила в редакцию 03.11.06.

Евгений Евгеньевич Гуревский - студент 4-го курса механико-математического факультета. Владимир Алексеевич Емеличев - доктор физико-математических наук, профессор кафедры уравнений математической физики.