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Abstract—The theory of the interaction of high-power counterpropagating laser pulses in a transparent
medium with an inertial cubic nonlinearity is developed. An effect of temporal compression of pulses due to
nonstationary cross-phase modulation, which results in energy exchange between the interacting pulses, is pre-
dicted. It is demonstrated that the direction of energy exchange is independent of the sign of the nonlinearity
parameter of a medium. For input pulses with different intensities, energy exchange can occur in the anomalous
direction—from a weak pulse to a strong pulse. The considered specific features of the nonstationary interaction
of counterpropagating pulses are manifested in schemes of multiwave mixing employed for the phase conjuga-

tion of short laser pulses.

1. INTRODUCTION

Since high-power ultrashort pulses of coherent radi-
ation are used for the investigation of ultrafast relax-
ation processes in matter, for the study of the interac-
tion of atoms and molecules with superstrong fields,
etc., the development and creation of optical systems
for the compression (temporal focusing) of laser pulses
is of considerable importance for the solution of funda-
mental problems and various applications [1].

Optical compressors based on the compression of
phase-modulated laser pulses in dispersive media (2]
have been thoroughly studied and have found wide
acceptance 1n practice. The phasing of the spectral
components of a laser pulse drastically shortens the
pulse and increases its peak intensity. However, in prac-
tice, it is rather difficult to implement the limiting
regime of pulse compression. Therefore, much effort 1s
being made in this field to remove aberrations arising in
modulators and compressors proper, to ymprove energy
characteristics and the stability of compressed pulses,
to control the shape of such pulses, etc. [1, 3].

In this paper, we propose a comparatively simple
method of temporal compression of laser pulses using
the interaction of laser pulses in a medium with an iner-
tial cubic nonlinearity. The cross-action of laser pulses
in a medium with an inertial nonlinear response gives
rise to nonstationary energy exchange between the
pulses [4, 5]. Such cross-action of the colliding pulses
results in temporal compression of pulses accompanied
by an increase in the peak power. Compression can be
achieved in the absence of the initial phase modulation
either for identical or for different (in the power, shape,
and duration) laser pulses.

Based on the linearized wave equations that
describe the interaction of counterpropagating stepwise
laser pulses, we found an explicit form of the function
that governs the spatial and temporal evolution of the
envelopes of laser pulses. We determined conditions of
optimal compression of pulses for various lengths of
the medium L and different relaxation times #; of the
nonlinear response. The derived set of wave equations
is analyzed for the general case by means of computer
simulation. We investjgated the distortion of the shape
of Gaussian pulses involved in multiple interaction
(collisions) in counterpropagating waves in a layer of a
medium with an inertial nonlinear response. We deter-
mined the ultimate degree of pulse compression as a
function of the number of passes through a layer of a
nonlinear medium and the ratio of the time L/v
required for a laser pulse to pass through the medium to
the relaxation time #, of the nonlinear response (i.e., the
parameter | = L/ vt,, where vis the speed of light in the
medium).

2. THE BASIC EQUATIONS

If the nonlinear addition &n to the refractive index n
of a transparent medium is related to inertial effects
(e.g., high-frequency Kerr effect), then the dynamic
equation for on is written as [1)]

. to(ddn/dt) +8n = n,|EP’, (1)
where n, 1s a constant that characterizes the nonlinear
addition and E is the amplitude of the light field.
For pulses propagating in opposite directions (along
the z-axis),

B = (E‘_eik:'i' E_C-ik:)e-im!. (2)
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the solution to equation (1) is written in terms of the
integral

§ t—-1

B = ’lzj(ggf +|E|*+2ReE,E*e*™ e " ar'.
ko<, (3)
Here, E.(z, t) are the slowly varying amplitudes of
the pulses and ® and k = (w/¢)n, are the mean fre-
quency and the wave number, respectively. The substi-
rution of (2) and (3) into the wave equation yields a set
of equations for slowly varying complex amplitudes of
pulses (6],

= = i‘-’i’(aj(]afqg_ﬁ)e > dr
lo =

f I—1 (4)
+E. j EXE,e ° dr'],

Where v = C/no and Yo = knz/no.

The boundary conditions of the problem are writ-
ten as

E.(0,1) = E,o(t), E_(L,t) = Eo(2). (3)

To analyze the set (4), it is convenient to use the sub-
stitution E, = A.exp(i¢,) and to consider equations for
real amplitudes A.(z, r) and phases ©.(z, t):

T

—_— = i?Ax_J.AH“-Sin U(t, t)e " ar,
0} =% (6)

t t~r

 dr

(7)

where U(t, t') = AQ(z, 1) — AQ(z, 1'); AQ(z, 1) = @.(z, 1) -
®_(z, t); and, correspondingly, E. = A,y exp(i@.,). For
to —= 0, the nght-hand sides of equations (6) vanish.
[n other words, the amplitudes of laser pulses propagat-
Ing in a medium with an instantaneous nonlinear
response remain unchanged. In the case of an inertial
nonlinear response (when f#, # 0), the right-hand sides
of equations (6) differ from zero, and the amplitudes of
Interacting pulses that propagate in the considered
medium are subjected to the corresponding changes (7].
Note that, in the case of an instantaneous nonlinear
response, the set of equations (4) has an exact analytical
solution, which was obtained by S.A. Akhmanov and
his collaborators [8].
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3. SOLUTION OF THE LINEARIZED EQUATIONS

We will analytically study the specific features of
the evolution of the amplitudes of counterpropagating
pulses in a medium with an inertial nonlinear response
using equations (6) and (7) linearized near the values
corresponding to the following boundary conditions of
the problem:

A.o(2) = A(t) = Ay = const, ®)
for 120, @u(t) = 0.
Setting
A (z,1) = A (t-2/Vv)+a.(z1), |a| < A, %)
A(z,t) = A (t=(L-2)/v)+a_(zt),
(z,¢) o(f—( )/ V) (z,¢t) (10)

la| < A,,

and assuming that |U(t, t')| < 1, we can apply (6) and
(7) to derive the following equations for a. and @,:

t-r

!

da. 10da. Yo e

et - = +— Ul(e, t' dt',

3% @ Ot tkojA*°A‘° Uste (1)

0
a(p+ la(p+ .Yo p 2 2 ':Or.

+ - e —- = — ’

o J(A+O+A,O)e dt
et (12)

al gt
+XZ—ZJA+0A_Oe ; d:’}

From the symmetry of equations (11) and (12) and
boundary conditions (8), we find that a. (L, ) =a (0, ) =
ao(t) and @, (L, 1) = @_(0, 1) = @y(1).

Linearized equations (11) and (12) govern the trans-
fer of amplitudes and phases of the counterpropagating
pulses and form an uncoupled set of inhomogeneous
equations (with known source terms in the right-hand
sides). The solutions to these equations are written in
terms of the integrals [9]

H.(z,t) = iJFt(z',t:Fg‘—:—,—z-)dz', (13)

<0
b |

where H, = {a., 0.}, F. are the functions of the
sources, zo =0 for H,, and zy = L for H_. Integration lim-
its within various regions of z are determined by the
space-time dependence of the amplitudes A.y(z, ) of
the counterpropagating pulses [9]. Using integrals (13)
and taking into account formulas (8)—(10) and the rela-
tion ©,(z, t) = @_(L - z, 1) = ©(z, 1), we can represent the
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Fig. 1. Evolution of (a) the normalized phase @, (1) =
(po(t)/'yoAg L and (b) the normalized deviation of the carner

frequency Q (1) = Q(‘t)/yoAg L within the envelope of l\aser
pulses for yy > 0 and various values of the parameter W
(Hu=04,(2) 3, (3)5, and (4) 10.

solution to equations (12) in the following form:
o(z, 1)

(2(1-€), for(0<z<vt, 0<1<L/2v)
((0<z<L-vt, L/2v<t<L/v)

')"

n

::Z(l -e{)+(z—L+ vt) — vig(1 = Y, (14)
=Y0A§< for (L-wvt<z<vt, L/2v<tsSL/v)
(0€z<L, L/vstS(L+2)/v)

A1 - )+ 2z -rbfe " —e ),

(for (0Sz<L, t=(L+2)/v),

where § = (t—z/v)/tp20and n. = (1= (L F 2)/v)/1, 2 0.
As can be seen from (14), for ¢ > t,, L/ v, the stationary
phase incursion of the pulses at the output of the

medium 1§ @ = 3‘yoA§ /5

Using (14), we can determine the dimensionless fre-
quency deviation (1) = (® — ® )ty = d®y(T)/dt due to
cross-phase modulation within the envelope of the out-
put pulses,

!l+(e“—l)e-’. forp<t<2p
.8 m
Q(T) - YvoLJ.

(e“ + -]-ezu - —l-)e-f, for 122,
L W it

where ® (T) 1s the instantaneous frequency of the output
pulses and 1 = t/1,. Obviously, the sign of the frequency

(15)
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Fig. 2. Time dependences of the normalized function

ay (T) = ,[YoL ao(T) for 70:43 L = 1 and various values of
the parameter i: (/) 1 =04, (2) 1, (3) 5, and (4) 10.

deviation is determined by the sign of the nonlinearity
parameter of the medium, ¥, ~ n,. Figure 1 presents the
plots of the normalized functions @y(T) and £2(T). As can
be seen from these plots, the frequency deviation reaches
its maximum on the leading edges of the pulses. Note
that, for large p (U > 1), we have 1/p £ 2| < 1 within
the interval p <1 < 211, Estimating the relevant parame-

ters as 1= 107125, Yo As L= 10", and p = 10%, we can use

(15) to find that the Stokes shift (or the anti-Stokes shift
if v, < 0) of the frequency ® of the output pulses falls

within the interval 10" 2 |0 - @ |2 10°s7".
’

Using formula (13) for the general solution to the
wave equations with allowance for (14) and performing
straightforward but sufficiently labor-consuming calcu-
lations, we can represent the expression for the function
ay(7T) 1n the form

- o -G:ot
ao(t) = Ag(YodoL) ¥ dit’e

X, O

(16)

where d, and G, are constant coefficients.’

Figure 2 displays the time dependence of the normal-
1zed function ay(T) (T = tv/L) calculated in accordance

with (16) for various values of the parameter Ll in the case
when ¥, > 0. As can be seen from these plots, for small p
(L < 1), the function ay(7) has a form of a dispersion
curve. As the parameter [ increases, which corresponds to
a decrease in the relaxation time 1, of the nonlinear

response, the maximum of the function ay(7) is shifted

toward smaller 7 and is sharpened (a, = 8 x 1072).

! Since we are limited in space here, rather cumbersome explicit

formulas for the coefficients d, and G,4 will be presented else-
where.
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Subsequently, the function ay(7") becomes more com-
plex and features additional maxima and minima (see
the curves for L = 5 and 10). The performed calcula-
tions demonstrate that, within the range 10 < u < 40,
the function ay(7T) only slightly changes its form, and
as(T) —= 0 with a further growth in the parameter L.

The minimum duration of the first (main) spike at the
half-maximum level i1s approximately 0.3p.

The evolution of the amplitudes of the counterprop-
agating pulses governed by the function ay(7) is due to
nonstationary energy exchange [4, 5, 10], which gives
rise to energy transfer to the leading edges of the pulses
through the cross-action of light waves regardless of the
sign of the nonlinearity parameter of the medium, n, ~ .
It 1s well known that energy exchange through fre-
quency-degenerate two-wave mixing is forbidden in a
medium with an instantaneous nonlinear response [11].
[n the case of an inertial nonlinear response of a
medium, cross-phase modulation changes the instanta-
neous frequency of pulses within pulse envelopes, and,
in fact, frequency-nondegenerate mixing is imple-
mented in the interaction of counterpropagating pulses,
so that energy exchange is no longer forbidden. Specif-
ically, the gain of a weak wave (|E_(0)| <€ |E.(®,)]),
which characterizes the efficiency of energy exchange
in frequency-nondegenerate mixing, can be represented
in the form [12]

2 w¢ .—w_
g(w_) ~YolE.| = s
IO +((D+—(D-)

(17)

Obviously, for v, > 0, amplification [g(®_) > 0] is
implemented in the Stokes spectral region. For vy, < 0,
amplification occurs in the anti-Stokes region. As can
be seen from (15), the following inequalities are satis-
fied in the case under consideration regardless of the
sign of n,:

J’ZO for L/2<z< vt

(@) ~ Yol EX(B_ - @, 18
8(®.) ~ Yol EJ ( Neo o 0zsLm,
gl(®.)
>0 for L-vt<z<L’2 (19)

) R i
~ E+ ma-_m—
YolE.|"( ) <0 for L/25z< L,

where ®.(z, 1) are the instantaneous frequencies of the

forward, E., and backward, E_, pulses. Inequalities (18)
and (19) are written for the region where L/2v<t<L/v.
Hence, nonstationary energy exchange results in the
amplification of the leading edges of the pulses, where
frequency conversion occurs with a higher efficiency
(see Fig. 1). Predominant amplification of the leading
edges of the pulses is naturally accompanied by the
depletion of energy in the remaining parts of pulse
envelopes. Obviously, for symmetric boundary condi-
tions (8), the integral pulse energies remain unchanged,
and the net effect of nonstationary energy exchange is
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reduced to the redistribution of energy within the
pulses, which is manifested in the distortion of pulse
envelopes. As the interaction of pulses approaches the
stationary regime, {2 —= 0. Correspondingly, energy
exchange ceases, and pulse envelopes become stable.
We can demonstrate that, in the case of amplitude
asymmetry of boundary conditions (8), A, # A,
energy exchange can occur in the anomalous direction
in the considered geometry: from a weak pulse to a
strong pulse [13].

Note that, in terms of dynamic holography [4], non-
stationary energy exchange can be interpreted as phase
mismatch between the light-induced grating of the
refractive index of the medium and the interference pat-
tern of the counterpropagating pulses. Such mismatch
1s charactenistic of frequency-degenerate two-wave
mixing in media with an inertial nonlinear response [4].2
Self-diffraction of radiation from a phase-mismatched
grating in a medium with an inertial response gives rise
to energy exchange between the writing pulses.

4. RESULTS OF NUMERICAL SIMULATION

For the purposes of numerical simulation, it 1s con-
venient to write the set of equations (4) in terms of
dimensionless variables x = z/L and T:

+a<$: +8<€5t
R od

T
. -uT 2 uwr
= ipu(sgnyy)e (%*J(,lc&l i ot (20)
T
+%8. j ‘é:‘éte“rdTJ,

where €. = ./|Yo|LE..

We solved the set of equations (20) with the use of
numerical methods for rectangular and Gaussian input
pulses. The results of numerical simulation (the output
intensities of the pulses) are presented in Figs. 3-5.

As can be seen from Figs. 3 and 4, in the considered
range of parameters, a growth in | leads to an increase
in the peak intensities of the output pulses. Correspond-
ingly, the pulse duration decreases (the total energy of
the pulses remains unchanged within an accuracy of 4%).
The peak intensities of the output pulses increase
approximately by a factor of 1.5. We can demonstrate
that, similarly to the linear case (see Section 3), the
influence of nonstationary energy exchange becomes
weaker for |1 > 40. As a result, the intensities of the out-
put pulses virtually coincide with the intensities of the
input pulses within this region. An analogous evolution

* The light-induced grating is automatically mismatched from the
interference pattern of the writing field in media with a nonlocal
nonlinear response [4].
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Fig. 3. Envelopes of the relative intensities of the output
pulses for various values of the parameter 1 in the case of

rectangular input pulses ICG:H)(T)I2 = 10 within the range
0 < T<T),, where T, = 0.2 is the normalized pulse duration.
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Fig. 4. Envelopes of the relative intensities of the output
pulses for various values of the parameter J in the case when

2 :
B10o(T) = 1€g P exp[«T - 3T,)*/ T, ) with |€,[* = 10 and
Tp =02
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Fig. 5. Envelopes of the relative intensities of the output
pulses for various N with p = 30. Parameters of the input
pulses are the same as in Fig. 4.

of the pulses also occurs when the input intensities of
the pulses are not equal to each other. If the input pulses
are switched on at different moments of time, then the
pulse is applied to a medium earlier and, correspond-
ingly, covers a greater distance in the medium before
the collision point features a more considerable vana-
tion in the shape.

To achieve the ultimate temporal compression of
pulses, one can use, for example, a ring cavity, which
makes it possible to implement multiple collisions of
pulses in a nonlinear medium. Numerical simulations
demonstrated that, after an appropriate number of col-
lisions, the output-pulses stabilize their shape and dis-
play virtually no variations later on.

Figure 5 shows the envelopes of the intensities of
the output pulses for different numbers N of pulse col-
lisions in the nonlinear medium in the case when the
input pulses have Gaussian shapes and equal intensi-
ties. To conserve the symmetry, the procedure of
numerical simulations implied the elimination of errors
that occurred in the calculation of the output intensities
of the forward and backward pulses. For the chosen
parameters, the shape of the output pulses became sta-
ble after N > 20 pulse collisions, whereupon the output
pulses acquired a complex temporal structure with a
clearly pronounced narrow peak, whose duration was
approximately an order of magnitude less than the
duration of the input pulses.

5. CONCLUSION

In this paper, we performed theoretical analysis of
the interaction of high-power counterpropagating laser
pulses in a transpareat medium with an inertial cubic
nonlinearity. Based on this investigation, we predicted
the effect of pulse compression due to nonstationary
cross-phase modulation, which gives rise to energy
exchange between the pulses and, as a consequence,
results in the distortion of pulse envelopes. It is demon-
strated that the direction of energy exchange is inde-
pendent of the sign of the nonlinearity parameter n, of
a medium. For input pulses with different intensities,
energy exchange can occur in the anomalous direc-
tion—from a weak pulse to a strong pulse. Due to the
conservation of the integral radiation energy (in the
absence of dissipation), pulse compression is accompa-
nied by the corresponding increase in the peak intensity
of the pulses. The considered specific features of the
interaction of counterpropagating pulses should be
taken into account in various problems of nonlinear
optics, including analysis of multiwave mixing for the
phasg conjugation of short laser pulses.

In conclusion, we should note that, in combination
with a nonlinear saturable filter, which makes it possi-
ble to improve the contrast of temporal characteristics
of radiation, the considered multipass compression
scheme may be of practical interest for various prob-
lems of laser physics. The effect of anomalous energy
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transfer from a weak pulse to a strong pulse can be
employed to produce profiled pulses.

D
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