- 2. A.P. Pigeaire, D. Abernethy, P.M. Smith, K. Simpson, N. Fletcher, C. Lu, C.A. Atkins, E. Cornish. Transformation of grain legume (Lupinus angustifolius L.) via Agrobacterium tumefaciens-mediated gene transfer to shoot apices // Molecular Breeding.-1997.-V.-3.- P. 341-349.
- 3. E.S. Zgagacz., J.J. Rybczynski. Different in vitro responses of three species of lupin // J. of Applied genetics. 1996, V. 37A, P.133-135.
- 4. В.Н. Решетников, Т.И. Фоменко, М.К. Малюш. Каллусогенез люпина. Биохимическая характеристика.// Весці НАНБ.-1999.-N4.-C.5-11.
- 5. *A. Chandra, D. Pental.* Regenaration and genetic transformation of grain legumes: An overview // Current Science. 2003. V.84, №3.-P. -381-387.
- 6. *G.E. Sroga.* Plant regeneration of two *Lupinus* spp. From callus cultures via organogenesis // Plant Sci.- 1987.- V. 51- P. 245-249.

СЕЛЕКЦИЯ ЛЮПИНА НА УСТОЙЧИВОСТЬ К ЗАСУХЕ И ПОВЫШЕННЫМ ТЕМПЕРАТУРАМ

А.С. Шик, В.В. Борсук

Полесский агро-экологический институт НАН Беларуси, Брест, Беларусь paeilab@tut.by

Климатические условия в Республике Беларусь за последние 15-20 лет претерпели значительные изменения. Так, в западной части Белорусского Полесья из пяти лет во время вегетации 2-3 года наблюдаются рвесенне-летние засухи с повышенными температурами. В связи с этим перед селекционерами поставлена задача по созданию и внедрению в аграрное производство новых устойчивых к неблагоприятным условиям пластичных сортов и гибридов сельскохозяйственных культур.

Степень эффективности селекционной работы определяется наличием ценного исходного материала для создания форм, устойчивых к действию экологических стрессовых факторов. Наиболее эффективным и точным способом для оценки сортов на устойчивость к засухе и повышенным температурам является сооружение засушников и камер искусственного климата. Однако такие исследования требуют значительных затрат и не всегда достоверны.

Метеорологические условия 2005-2007 годов способствовали проверке селекционного материала желтого и узколистного люпина (изучению подвергались 24 сорта и образца) на реакцию растений к стрессовым ситуациям (таблица). Исследования проводились в ЧУАП «Озяты» Жабинковского района на мелиорированных низкобонитетных торфяно-глеевых, дерново-глееватых и дерново-подзолистых почвах, составляющих более 80 % сельскохозяйственных угодий Брестского Полесья.

Результаты исследований показали, что реакция узколистного люпина на повышенные температуры в большей степени существеннее по сравнению с желтым. С ростом температуры на $1~^{0}$ С вегетационный период желтого люпина уменьшался на 6,7 дня, в то время как у узколистного – на 8,3 дня.

Длина вегетационного периода зависит от количества выпавших осадков. Их уменьшение на 50-70 мм в весенне-летний период при практически равных среднесуточных температур приводило к сокращению сроков созревания на 8-25 дней.

Следует отметить, что между сортами желтого люпина варьирование устойчивости к засухе почти не наблюдалось, тогда как у узколистных форм различия весьма существенны. Среди изученных сортов наиболее устойчивыми к дефициту влаги и повышенным температурам относятся БСХА 382, Мотив 389, «Кастрычник», Берестье, Пружанский (желтые люпины) и Вясковы, Прывабны, Гуливер, Эдельвейс, Сидерат 890 (узколистные люпины). Они отличались более поздним периодом созревания и мощно развитой корневой системой.

Зависимость вегетационного периода и продуктивности желтого и узколистного люпина от метеорологических условий

Годы исследований	Среднесуточная температура ⁰ С (май-июнь)	Осадки, мм (май-июнь)	Вегетационный период (всходы-созревание), сут.				Урожайность зерна, ц/га			
			Желтый люпин		Узколистный люпин		Желтый люпин		Узколистный люпин	
			ECXA 382	Берестье	Прывабны	Першацвет	ECXA 382	Берестье	Прывабны	Першацвет
2005	19,0	235	94	91	88	89	13,2	14,8	18,6	12,8
2006	16,8	83,5	95	97	90	90	14,1	16	21,5	14,3
2007	17,4	105	97	97	90	88	15,7	18,2	20,8	16,5
Среднемноголетние	15,1	134	124	123	111	110				

Существенным моментом в повышении засухоустойчивости растений люпина является оптимизация минерального питания. Результаты исследований показали, что предпосевное внесение фосфорных и калийных удобрений, а также так называемых «стартовых» доз азотных туков (N_{15-20}), при дефиците влаги в весенне-летний период приводило не к увеличению, а к снижению устойчивости растений люпина к засухе. Видимо, дополнительное накопление биомассы при увеличении доз внесения удобрений требует большего расхода воды. В данном случае более эффективным является заблаговременное внесение туков осенью под зяблевую вспашку.

Результаты наших исследований свидетельствуют о том, что растение люпина более продуктивно использует влагу при внесении медь- или цинксодержащих препаратов. Качество и количество полученной продукции улучшалось. Одним из объяснений наблюдаемого явления может быть увеличение концентрации меди и цинка в почвенном растворе при снижении влаги в почве. В результате уровень воздействия этих микроэлементов на почвенные фосфаты усиливается, что приводит к увеличению доступного фосфора.

ИССЛЕДОВАНИЯ ПО ЧАСТНОЙ ГЕНЕТИКЕ ПШЕНИЦЫ В КАЗАХСТАНЕ К.К. Шулембаева, Ж.Ж. Чунетова, С.Б. Даулетбаева, Н.Ж. Омирбекова

Казахский национальный университет им. аль-Фараби, Алматы, Казахстан dsaniya@mail.ru, shulembaeva@kaznu.kz

Сорту, как динамической биологической системе, обладающей способностью реализовать генетический потенциал при самом разнообразном сочетании и сложном взаимодействии многочисленных факторов внешней среды, принадлежит одно из главных мест в решении проблемы роста урожайности, устойчивости к стрессовым факторам среды