

Рис. 3. Влияние различных концентраций 6-БА: а – на рост микрорастений (см); б – на каллусогенез у основания стеблей (%).

Таким образом, концентрации 6-БА выше 1 мг/л вызывали негативные явления при культивировании эксплантов: снижение длины микропобега и стимулирование каллусогенеза, коэффициент размножения при этом не увеличивался.

Было продемонстрировано, что использование концентраций 6-БА сверх оптимальных при культивировании подвоев яблони и вишни не приводит к повышению коэффициента размножения изучаемых культур, но стимулирует явления, негативные для процесса клонального микроразмножения: каллусогенез и снижение длины микропобега для обеих изученных культур, а также витрификацию у клоновых подвоев яблони.

Для размножения *in vitro* рекомендуется использовать такие концентрации фитогормонов, которые не вызывают морфологических изменений регенерантов в процессе культивирования, что снижает риск возникновения сомаклональных мутаций (табл. 2).

Таблица 2 Оптимальные концентрации 6-БА для размножения подвоев яблони и вишни

Вид растения	Форма подвоя, сорт	Концентрация 6-БА	Коэффициент размножения				
Malus	54-118	2мг/л	5,01±0,53				
	62-396	2мг/л	4,39±0,20				
	ПБ-4	2мг/л	3,98±0,38				
Prunus	GiSelA 5	1мг/л	8,7±1,17				
	ВСЛ-2	1мг/л	12,0±2,35				
	ОВП-2	1мг/л	8,1±0,87				

ДИФФЕРЕНЦИАЦИЯ ОБРАЗЦОВ ЯЧМЕНЯ ПО СТЕПЕНИ ТЕРМОСТАБИЛЬНОСТИ β-АМИЛАЗЫ

Н.В. Луханина, М.Г. Синявская, О.Г. Давыденко

ГНУ «Институт генетики и цитологии НАН Беларуси», Минск, Беларусь cytoplasmic@mail.ru

Одним из важнейших ферментов пивоварения является β-амилаза. β-амилаза (α-1,4-глюканмальтогидролаза) гидролизует крахмал до образования мальтозы. Накопление мальтозы в субстрате интесифицирует процесс брожения, так как этот сахар служит субстратом для жизнедеятельности дрожжей. Две или три копии гена β-амилазы находятся на хромосоме 4H [1], а сам фермент накапливается в течение формирования семени.

Известен ряд природных аллельных форм гена Bmy1 (β -амилаза) — Sd1, Sd2H, Sd2L, Sd3 с разной термостабильностью и кинетическими свойствами [2, 3]. Эти различия критически влияют на пивоваренные качества сортов ячменя. Термическая инактивация этого фермента в процессе приготовления пивного сусла является важной проблемой, поскольку, в большинстве случаев активность β -амилазы значительно снижается в процессе осоложения, который происходит при высоких температурах.

Цель данной работы состояла в том, чтобы определить, имеются ли в геномах исследуемых образцов ячменя аллели термостабильной β-амилазы. Материалом исследования являлись сорта ячменя, выращиваемые в Беларуси, а также сортообразцы из коллекции РНИУП "Институт земледелия и селекции НАНБ". Специфический праймер β-Amy1intron III гена β-амилазы района 4H хромосомы [4] позволяет дифференцировать образцы ячменя по степени термостабильности − низкая/средняя. Применение данного маркера позволило установить, что из 32 изученных образцов большинство несет в своем геноме Sd1b аллель β-амилазы, детерминирующий изоформу данного фермента с промежуточной (средней) степенью термостабильности. Только сорта Маентак, Баронесса несут единственную Sd2L аллель β-амилазы (она детерминирует фермент с низкой степенью термостабильности). У сортов Гастинец, Сталы, Булат, Талер, Дивосный, Сябра, образцов №№8, 9, 11, 13-15, 19, 21 отмечено присутствие аллелей Sd2L и Sd1b - форм β-амилазы как с низкой, так и со средней термостабильностью (табл. 1, 2).

Таблица 1 Распределение аллелей Sd1b и Sd2L среди сортообразцов, предоставленных для исследования

	Образец №	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	21	21
фрагмента	516 п.о. (Sd1b аллель)	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
Размер ф	643 п.о. (Sd2L аллель)	-	1	-	-	-	1	-	+	+	-	+	1	+	+	+	-	1	-	+	1	+

 Таблица 2

 Распределение аллелей Sd1b и Sd2L среди сортов, выращиваемых в Беларуси

	Сорт	Баронесса	Инари	Талер	Сталы	Антьяго	Тюрингия	КотА	Сябра	Гонар	Рассвет	Атаман	Маентак	Дивосный	Стратус	Днепровский	98жВ	Гастинец	Бурштын	Роланд	Прима	Визит	Зазерский
фрагмента	516 п.о. (Sd1b аллель)	-	-	+	-	+	+	+	-	+	+	+	1	+	+	+	+	1	+	+	+	+	-
Размер ф	643 п.о. (Sd2L аллель)	+	+	1	+	-	-	-	+	-	-	-	+	-	-	1	1	+	-	-	1	+	+

Таким образом, нами показана применимость маркера интрона III β-Amy1 для дифференциации образцов ячменя по степени активности β-амилазы. Такое разделение перспективно для использования в селекционном процессе, поскольку позволяет отбирать

на ранних стадиях перспективные образцы для селекции кормового либо пивоваренного ячменя. Использование молекулярного маркера интрона III β-Amy1 позволяет селектировать рстения по качеству солода на стадии ранних гибридных поколений.

Работа выполнялась в рамках ГПОФИ «Селекция, семеноводство и генетика 06» «Оценка молекулярно-генетического разнообразия сортов и селекционного материала ячменя (*Hordeum vulgare L*.) в целях оптимизации селекционного процесса ячменя в условиях Беларуси».

- 1. *M. Kreis, M. Williamson, P. R. Shewry, P. Sharp, and M. Gale,* Identification of a second locus encoding b-amylase on chromosome 2 of barley // Genet. Res. Cambr.-1988. V.51.-P. 13—16.
- 2. *M. Paris, M.G.K. Jones, J.K. Eglinton,* Genotyping single nucleotide polymorphisms for selection of barley bamylase alleles // Plant Mol. Biol. Rep. 2002. V. 20. P.149–159.
- 3. *E. Chiapparino, P. Donini, J. Reeves, R. Tuberosa, D. M. O'Sullivan, Distribution of b-amylase I haplotypes among European cultivated barleys // Mol. Breeding. 2006. V. 18. P. 341–354.*
- 4. *M. Erkkila*, Intron III-Specific Markers for Screening of β-amylase Alleles in Barley Cultivars // Plant Mol. Biol. Rep. 1999. V.17. P.139-147.

ПОЛИМОРФИЗМ DESCHAMPSIA ANTARCTICA ПРИМОРСКОЙ АНТАРКТИДЫ ПО РЕЗУЛЬТАТАМ RAPD-АНАЛИЗА

Д.Н. Майданюк 1,2 , Д.М. Адноф 1 , И.О. Андреев 1 , Е.В. Спиридонова 1 , И.Ю. Парникоза 3 , И.А. Козерецкая 3 , В.А. Кунах 1

¹ - Институт молекулярной биологии и генетики НАН Украины, Киев, Украина ² Луганский национальный аграрный университет, Луганск, Украина ³ Киевский национальный университет им. Тараса Шевченко, Киев, Украина redmaidan@gmail.com

Флора цветковых растений Антарктиды представлена всего двумя видами: *Deschampsia* antarctica Desv. и *Colobanthus quitensis* (Kunth) Bartl. [1]. Ранее нами было показано, что в условиях различных районов Приморской Антарктиды растения *D. antarctica* произрастают на почвах различного химического состава, инфицируются рядом вирусов, а также характеризуются значительной изменчивостью по содержанию ДНК в ядре и размерам ядрышка клеток паренхимы и эпидермы листка [2]. Целью данной работы была оценка генетической гетерогенности данного вида в двух регионах Приморской Антарктиды методом RAPD-анализа.

Изучено пятнадцать экземпляров *D. antarctica* из точек, расположенных в районе Аргентинских островов: о. Галиндез (2 точки), о. Большой Ялур (2), о. Питерманн (1), о. Бертелот (2), о. Уругвай (1), мыс Расмуссен (1), а также о. Ватерлоо (Кинг-Джордж), расположенного на 430 км севернее (арх. Южные Шетландские о-ва) (6 точек). RAPD-анализ проводили с использованием тридцати случайных десятинуклеотидных праймеров.

В RAPD-спектрах изученных объектов обнаружен значительный полиморфизм. Полиморфными оказались 47,4% учтенных ампликонов. При этом генетические дистанции по Нею [3] между растениями из отдельных точек составили от 0,0695 до 0,1280. Построенная по результатам анализа дендрограмма не обнаружила группировки исследованных объектов в кластеры в связи с их географическим расположением (рисунок). В целом результаты проведенного RAPD-анализа свидетельствуют о сопоставимости генетической гетерогенности растений, взятых с одного острова, и растений с различных островов.

Результаты проводившихся ранее исследований генетического полиморфизма растений *D. antarctica* Приморской Антарктиды достаточно противоречивы. В одной из работ AFLP-анализ растений *D. antarctica* из популяций о. Сигни на севере и отдаленной примерно на 1350 км группы из трех близлежащих островов Леон на юге Приморской Антарктиды,