Химия

УДК 541,451;53; 138+548,776

М.И. ИВАНОВСКАЯ, Д.А. КОТИКОВ

О СТРУКТУРЕ ПЛЕНОК МоО₃, ПОЛУЧЕННЫХ ЭЛЕКТРОХИМИЧЕСКИМ МЕТОДОМ*

Structural peculiarities of $Mo_7O_{3n\times}$ films deposited electrochemically from ammonium paramolib-date solution were studied by XRD, EPR, XPS and optical spectroscopy. The occurrence of Mo(V) centers with various symmetry of coordination environment, F-centers, hole O and adsorbed O_2 centers were found in the studied samples. The structural distinctions of the films obtained by electrochemical deposition and thermal dehydration of MoO_3 nH_2O xerogels were compared.

Пленки MoO_3 могут быть получены как химическим методом, основанным на использовании коллоидных растворов $MoO_3 \cdot nH_2O$ [1, 2], так и электрохимическим осаждением из растворов молибдатов [3,4], обеспечивающим возможность варьирования условий электроосаждения с целью достижения заданного состава продукта. Это позволяет контролировать фазовый и химический составы пленок, их толщину, наносить пленки на подложки разной химической природы и геометрии. Имеются данные о возможности получения целого ряда молибден содержащих продуктов Mo(II), Mo(V), Mo(V), Mo(V), Mo(V), однако в литературе приводятся разнородные сведения о состоянии ионов молибдена в растворах и о составе продуктов электроосаждения.

В данной работе основное внимание было уделено изучению структуры образцов MoO_x , полученных при электроосаждении оксида молибдена на подложках из разных материалов. Данные о структуре сформированных пленок сравнивались с исследованными ранее образцами MoO_3 . полученными термической дегидратацией коллоидных растворов [1, 2].

Материал и методика

С учетом результатов вольта мперометрических исследований [5] осуществляли синтез образцов $MoO_x \cdot nH_2O$ в разных условиях с целью получения пленок, отличающихся структурно-фазовым составом. Осаждение проводили при циклической подаче тока для формирования однородных по составу продуктов.

Электрохимически были синтезированы три образца.

Образец 1 получали на электроде ITO/кварц площадью 1 см² в условиях циклирования потенциала в области -0,8÷-0,25 В в течение 20 мин при скорости развертки потенциала 20 мВ/с. Электрод ІТО на кварцевой подложке получали нанесением коллоидного раствора, содержащего гидроксиды индия и олова, с последующим прогревом на воздухе при 300 °C в течение 1 ч. В качестве электродактивного вещества использовали раствор мо-либдата натрия (0.025 моль/л) в соляной кислоте (0,01 моль/л). Такие условия были выбраны, поскольку волны на соответствующей вольт-амперной кривой указывали на протекание процесса восстановления Mo(VI) в составе молибдат-аниона. В результате электрохимического процесса на электроде получили тонкую коричневую пленку.

^{*} Авторы статьи - сотрудники НИИФХП БГУ.

Условия получения **образца 2** отличались величиной потенциалов (0÷0,6 B), более высокой концентрацией HCl (0,1 моль/л) и соответствовали второй волне на вольт-амперной кривой. На электроде получили тонкую синюю пленку.

Образец 3 осаждали на титановой пластине (2х0,3 см) в течение 2 ч а тех же условиях, что и для образца **1**, Восстановление проводили с целью получения значительного количества образца, необходимого для рентгенографического и ЭПР-исследований. В результате образовалась толстая коричневая пленка.

Структурные особенности образцов исследовали методами РФА, РФЭС, ЭПР, оптической спектроскопии.

Рентгенограммы образцов записывали на дифрактометре ДРОН-2.0 с использованием CoK_{α} -излучения (λ = 0,178896 нм) и Fe-фильтра. Идентификацию фаз проводили по набору d (ASTM).

РФЭ-спектры пленочных образцов регистрировали на спектрометре ES 2401 с использованием MgK $_{\alpha}$ -излучения (1253,6 эВ). Стандартом являлась линия адсорбированного углерода С 1s (E_{cs} = 284,6 эВ).

Оптические спектры пропускания пленок, осажденных на кварцевые пластины с предварительно нанесенным слоем ITO, записывали на спектрофотометре SPECORD M 40 а области λ = 200÷900 нм.

Спектры ЭПР регистрировали на спектрометре Varian E 112 на частоте 9,35 ГГц при температурах 77 и 300 К. Значения д-факторов определяли относительно линий СТС $\mathrm{Mn}^{2^+}/\mathrm{MgO}$.

Результаты и их обсуждение

Фазовый состав. Можно ожидать, что в образцах 1 и 3 коричневой окраски наряду с состоянием Mo(VI) будут присутствовать частично восстановленные состояния Mo(V) и Mo(IV). Образец 2 синего цвета может содержать Mo(V), в частности молибденильные группировки (Mo=O) Однако исходные образцы являются рентгеноаморфными, что не позволяет выявить возможное присутствие в их составе фаз, характерных для восстановленных форм молибдена. После прокаливания при температуре 400 °C, когда, как правило, происходит кристаллизация аморфных образцов $MoO_3 \cdot nH_2O$ в стабильную ромбическую фазу, полученные электрохимически образцы имеют сложный фазовый состав (табл. 1,2). Данные РФА свидетельствуют о том, что наряду с основной фазой ромбического МоО₃ в образцах дополнительно присутствуют моноклинные фазы $MoO_3 \cdot 2H_2O$, $MoO_3 \cdot H_2O$ и фазы кристаллографического сдвига типа $MoO_x(OH)_v$. Их появление характерно для начальных стадий кристаллизации аморфных образцов MoO₃·nH₂O. Данные РФА (см. табл. 1,2) подтверждают более высокую степень восстанов-ленности образца коричневой окраски относительно образца синей окраски.

Таблица 1 Значения межппос костных расстояний по данным РФА коричневого образца 3

Данные эксперимента		Данные литературы					
		MoO ₃ (JCPDS 5-508)		Mo ₅ O ₇ (OH) ₈ (JCPDS		H₂MoO₄ (JCPDS 1-125)	
d, A	/, %	d, A	/, %	d, A	/, %	d, A	/, %
6,922	30	6,944	20	_	-	-	-
3,797	60	3,817	47	_	-	-	-
3,467	40	3,460	35	_	_	3,472	100
3,25	100	3,257	58	_	-	-	-
3,008	5	3,003	9	_	_	_	_
2,696	10	2,703	12	_	-	-	-
2,650	30	2,653	20	_	-	2,632	15
2,551	10	-	_	2,559	100	2,551	25
2,531	10	2,525	7	2,519	30	_	_
2,342	80	2,331	7	2,347	10	_	_
2,308	15	2,309	17	2,999	70	_	_
2,241	85	_	_	2,222	30	_	_

Таблица 2 Значения межплоскостных расстояний по данным РФА синего образца 2

Данные эксперимента		Данные литературы					
		MoO ₃ (JCPDS 5-508)		MoO _{2,5} (OH) _{0,5} (JCPDS 14-41)		MoO₃·2H ₂ 0 (JCPDS 16-497)	
d,A	/, %	d,A	/, %	d,A	/, %	d,A	/,%
6,922	10	6,944	20	-	-	-	-
6,899	75	-	-	-	-	6,897	89
3,846	3	-	-	3,845	100	-	-
3,804	12	3,817	47	-	-	-	-
3,513	33	-	-	3,521	60	-	-
3,456	100	-	-	-	-	3,448	31
3,401	2	-	-	-	-	-	-
3,295	3	-	-	3,300	100	3,311	40
3,260	1	3,257	58	-	-	3,236	40
3,000	3	3,003	9	-	-	-	-
2,700	1	2,703	12	-	-	-	-
2,647	2	2,653	20	-	-	-	-
2,606	2	2,604	3	-	-	-	-
2,521	2	2,525	7	-	-	-	-
2,347	17	2,331	7	-	-	-	-
2,304	90	2,309	17	-	-	-	-

Оптическая спектроскопия. Исследовались пленки коричневого $(MoO_x, ofpaseq 1)$ и синего цвета $(MoO_3 \cdot nH_2O, ofpaseq 2)$, полученные электрохимически на кварцевых подложках с нанесенной проводящей пленкой ITO.

Оптический спектр пленки ITO приведен на рис. 1,1. В спектре синей пленки (образец 2) наблюдались полосы поглощения слабой интенсивности при 400 и 530÷540 нм и интенсивная полоса при 750 нм (рис. 1, 2).

Полоса поглощения при 400 нм может указывать на присутствие Mo(V) в октаэдрическом $(O_h,)$, а также квадратно-пирамидальном (C_{4v}) окружениях. Энергия перехода $b_2 \rightarrow b_1$ комплекса симметрии C_{4v} равна энергии перехода ${}^2T_{2g} \rightarrow {}^2E_g$ октаэдрического комплекса (табл. 3). Такая полоса поглощения характерна, как правило, для аморфных образцов $MoO_3 \cdot nH_2O_1$, содержащих Mo(V).

Таблица 3 Данные оптической спектроскопии для пленок Mo0₃·nH₂0 (образец 2)

Полоса поглощения, нм	Состояние молибдена	Симметрия	Переход
400	Mo(V)	O_h	${}^{2}T_{2q} \rightarrow {}^{2}E_{q}$
	Mo(V)	C_{4V}	$b_2 \rightarrow b_1$
530+540	Mo(V)	T_d	$^{2}E_{q} \rightarrow ^{2}T_{2q}$
	Mo()	O_h	$I_g \rightarrow I_{2g}$
700-750	[Mo=O] ³⁺	O _h	$Mo_{5+} \rightarrow Mo_{6+}$
	Mo(V)		b₂→e

Слабая полоса поглощения при 530+540 нм может быть обусловлена как присутствием Mo(V) в тетраэдрическом, так и Mo(IV) в октаэдрическом окружениях. Поглощение при 750 нм указывает на наличие в MoO₃·пH₂O мо-

либденильных структур (Мо=О)³⁺ и обусловлена переносом заряда Мо(V)→Мо(VI), что вызывает синюю окраску образцов.

В оптическом спектре коричневой пленки $MoO_3 \cdot nH_2O$ (рис. 1, 3), условия получения которой способствуют формированию в ней более восстановленной структуры, наблюдается поглощение в виде широкой полосы при $400 \div 470$ нм и слабой полосы при $\lambda_{max} = 680$ нм. Широкая бесструктурная полоса может свидетель-

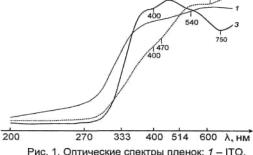
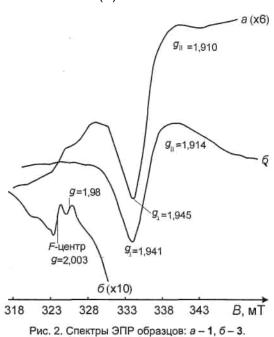


Рис. 1. Оптические спектры пленок: 1 - ITO, $2 - ITO + MoO_3 \cdot nH_2O$ коричневый (образец 1), $3 - ITO + MoO_x$ синий (образец 2)

ствовать о суммарном поглощении большого числа полос, а может являться следствием присутствия MoO₂, обладающего металлической проводимостью.

Полоса с максимальным поглощением при 680 нм может быть обусловлена присутствием в пленке Mo(V) в искаженной октаэдрической координации, что свойственно ассоциированным ионам Mo(V), образующимся в результате полимеризации молибдат-ионов при pH ~ 4.


Данные оптической спектроскопии подтверждают неоднородное состояние молибдена и присутствие в синтезированных пленках частично восстановленных состояний молибдена Mo(V) и Mo(IV) с различной симметрией координационного окружения.

Рентигеновская фотоэлектронная спектроскопия. Исследовали пленку MoO_3 , прогретую в течение 1 ч на воздухе при 400 °C (образец **2**). Спектры Moodetarrowall и Oodetarrowall Oodetarrowall и Oodetarro

Таблица 4 Сравнение результатов РФЭС электрохимически и химически осажденных пленок МоО₃

Параметры, эВ	MoO ₃	Состояние элементов	
	электрохимическое осаждение, 400 °C, 1 ч	термическое разложение, 700 °C, 1 ч	
E _{cs} Mo 3 <i>d</i> _{5/2}	232,5	232,5	Mo(VI)
	231,7	-	Mo(V)
ПШПВ	1,4	1,3	-
E _{cs} O1s	530,6 (80%)	530,9 (80%)	O ²
	533,3 (20%)	532,9 (15%)	OH (H ₂ 0)
ПШПВ	2,1	1,8	-

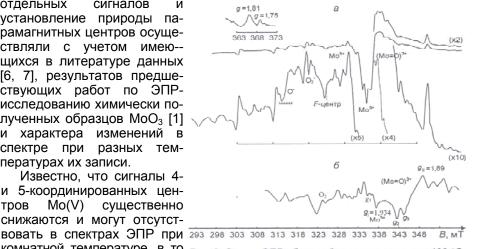
Из представленных данных следует, что на поверхности электрохимически осажденной пленки, прокаленной при 400 °C, преобладает состояние Mo(VI). Однако линия Мо $3d_5/2$ в РФЭ-спектре пленки несколько уширена в область меньшей величины E_{cs} по сравнению с линией Мо $3d_{5/2}$ в спектре высокотемпературного образца MoO_3 , что может быть обусловлено присутствием в ней Mo(V).

Температура записи - 77 К

Линия O 1s также более широкая по сравнению со спектром образца МоО₃, полученного термическим методом. При этом в спектре О 1s электрохимической пленки четко различимы два состояния кислорода - решеточный O^{2-} и ОН и/или H_20 . Эти данные согласуются с результа-РΦА синтезированной тами указывающими пленки. присутствие наряду с МоО₃ (ромб.) фаз $MoO_{2.5}(OH)_{0.5}$ и $MoO_3 \cdot 2H_2O$.

ЭПР-исследование. В спектрах ЭПР непрогретых образцов MoO_3 , полученных электрохимическим осаждением, отмечаны интенсивные сигналы аксиальной формы с параметрами: $g_{\perp} = 1,941 \div 1,945$, $g_{\parallel} = 1,910 \div 1,914$ (рис. 2).

Такие спектры ЭПР характерны для 6-координированных центров Mo(V) с ромбической симметрией в МоО₃. При большой интенсивности сигнала, как правило, слабо выражены компоненты g_2 и g_3 (или g_{\parallel}), что мы и наблюдаем. Наряду с интенсивным сигналом Mo(V) в спектре присутствуют сигналы слабой интенсивности с д-факторами 2,003 и 1,89, которые могут быть отнесены к F-центрам и 5-координированным Mo(V) в координации вытянутой пирамиды соответственно, природа которых будет рассмотрена далее.


Интенсивность сигнала центров Mo(V) в 2-3 раза выше в спектре MoO₃ (образец 3), полученного на Ті-подложке, чем на пленке ITO (образец 1). Можно отметить, что на Ті-лодложке по сравнению с ІТО-лленкой процесс осаждения МоО₃ протекает интенсивнее. По данным ЭПР, концентрация Mo(V) в образцах коричневой окраски выше, чем в образце синего цвета.

Содержание Mo(V) в электрохимически полученных образцах ($\sim 10^{19} {
m r}^{-1}$) значительно превосходит концентрацию Mo(V) в образцах, полученных высушиванием при 100 °C коллоидных растворов (-10 3 г⁻¹).

Известно, что в зависимости от условий получения и последующей термообработки МоОз может кристаллизоваться в различных модификациях. Моноклинная фаза образуется при неполной термической дегидратации и невысоких температурах (до 300 °C) аморфных образцов MoO₃·nH₂O, а при 400 °C моноклинная структура переходит в стабильную ромбическую слоистую структуру МоО₃, состоящую из двухмерных сеток, связанных вершинами октаэдров [MoO₆]. Слабзя связь между слоями позволяет им перестраиваться в полиморфные модификации Mo_nO_{3n-х} по механизму кристаллографического сдвига. В ромбической структуре MoO_э можно выделить три типа координированных атомов кислорода: 1 - r(Mo-O) = 0.167 нм, 2 - r(Mo-O) = 0.195 и 0.233 нм и 3 - r(Mo-O) = 0.173 и 0.225 нм. По этой причине искажение решетки или отсутствие атома кислорода в одной из позиций приведет к появлению центров Mo(V) с различной симметрией координационного окружения, а следовательно, и с несколько различающимися параметрами сигналов ЭПР. Этим можно объяснить сложный вид спектра ЭПР образца 3 после прокаливания при 400 °С (рис. 3). Ввиду этого, а также перекрывания линий от сигналов разных парамагнитных центров и присутствия линий СТС от взаимодействия неспаренных электронов с магнитными моментами ядер ^{95,97}Мо количественный анализ спектра и установление химической природы всех центров затруднены. Поэтому выделение линий

отдельных сигналов установление природы парамагнитных центров осуществляли с учетом имею-щихся в литературе данных [6, 7], результатов предшествующих работ по ЭПРисследованию химически полученных образцов МоО₃ [1] и характера изменений в спектре при разных температурах их записи.

Известно, что сигналы 4и 5-координированных цен-Mo(V) существенно снижаются и могут отсутсткомнатной температуре, в то _{Рис. 3.} Спектр ЭПР образца 3, прокаленного при 400 °C. время как сигналы 6-координированных центров Mo(V)

Температура записи: a - 77 K, б - 300 K

сохраняют в этих условиях высокую интенсивность. Такое поведение сигналов позволяет выявить присутствие в образце центров Mo(V), различающихся координационным окружением кислорода.

С учетом сказанного методом ЭПР в электрохимически полученных образцах после прокаливания при 400 °С выявлены следующие парамагнитные центры различной химической природы: кислородные, электронные (F-центры) и центры Mo(V) с различной симметрией координационного окружения (табл. 5).

Таблица 5 Природа парамагнитных центров в образцах МоО₃, прокаленных в течение 1 ч при 400 °C

на воздухе, и параметры их спектров ЭПР					
g ₁	g_2	g ₃	Характеристика центров		
2,07	2,003	1,975	Дырочные центры (Mo-O) ⁵⁺		
	2,003	-	F-центры		
2,026	2,010	2,002	Адсорбированные анион-радикалы О2		
$g_{\perp} = 1.98, g_{\parallel} = 1.89$			$[Mo^{5+}-(O^{2-})_5]$ в ромбически искаженном квадратно-		
•			пирамидальном окружении		
1,957	1,944	1,862	$[Mo^{5+}-(O^2)_5]$ в октаэдрическом окружении с отсутст-		
			вующим ионом кислорода в экваториальном окружении		
1,953	1,942	1,878	[Mo⁵⁺-(O²-)₅] в октаэдрическом окружении кислорода с		
			ромбическим искажением		
1,944	1,913	1,899	[Mo⁵⁺-(O²-)₅] в октаэдрическом окружении кислорода с		
			ромбическим искажением		
1,952	1,929	1,811	$[(Mo=O)^{3+}-(^{2})_{3}]$ - молибденильные центры		
g _⊥ = 1,926, g ₁₁ = 1,755			[(Mo ⁵⁺ =O)-(0 ²⁻) ₄] - молибденильные центры		
$g_{\perp} = 1,934, g_{\parallel} = 1,89$			$[Mo^{5^+}-(O^{2^-})_6]$ в фазах кристаллографического сдвига		

Спектр ЭПР электрохимически полученного и прогретого на воздухе при 400 $^{\prime\prime}$ С образца MoO₃ отличается от спектра исследованного ранее образца MoO₃ [1], полученного термической дегидратацией MoO₃·nH₂O: 1) присутствием сигнала $^{\prime\prime}$ -центров с $^{\prime\prime}$ g = 2.003 и линий СТС от $^{\prime\prime}$ Mo ($^{\prime\prime}$ J = 5/2); 2) меньшей интенсивностью сигналов 5-координированных Mo(V), особенно в координации вытянутой ромбически искаженной квадратной пирамиды; 3) присутствием ион-радикальной формы адсорбированного кислорода O₂; 4) большей термической стабильностью парамагнитных центров Mo(V). Сходство образцов MoO₃ прежде всего состоит в том, что в них присутствуют состояния Mo(V) с различной симметрией кислородного окружения. Центры Mo(V), как известно, ответственны за многие функциональные свойства пленок $^{\prime\prime}$ $^{\prime\prime}$ 0, электрохромные, каталитические, адсорбционные.

Некоторые из наблюдаемых различий в спектрах ЭПР могут свидетельствовать о том, что в электрохимически полученном образце MoO_3 после термообработки в большом количестве присутствуют изолированные дефекты структуры, а не ассоциированные, как это, вероятно, наблюдается в химически полученных образцах. В первом случае количественно преобладают изолированные кислородные вакансии со стабилизированным в них электроном, а также 5-координированные Mo(V) в октаэдрической координации кислорода с ромбическим искажением. Такие изолированные центры дают, как правило, четкую картину СТС (от взаимодействия неспаренного электрона с магнитным моментом собственного ядра в случае центров Mo(V) или соседнего катиона молибдена - в случае F-центров и дырочных O-центров). Отсутствие СТС от ядер O0 в спектрах ЭПР O0 во O0 образцов O0, полученных химическими методами, объясняется особенностями их структуры, обеспечивающими возможность быстрого обмена электронами между O1 и O1.

Эти особенности структуры могут быть обусловлены наблюдаемыми различиями в процессах кристаллизации MoO_3 из аморфного состояния и механизме формирования дефектов при нагревании образцов, полученных химическим и электрохимическим методами. Как следует из данных оп-

тической спектроскопии и ЭПР, продукты электроосаждения из молибдат ных растворов содержат в большом количестве частично восстановленные формы молибдена, преимущественно Mo(V). При его нагревании происходит окисление Mo(V), однако некоторое количество центров Mo(V), регистрируемых методом ЭПР, сохраняется и после прокаливания при $600\,^{\circ}$ С. По этой причине наблюдаемый спектр ЭПР от прогретых образцов имеет форму, характерную для реокиспенных образцов MoO_3 [7].

В высушенных пленках коллоидных растворов $MoO_3 \cdot nH_2O$ состояние Mo(V) не обнаружено. Центры Mo(V) образуются в результате термической дегидратации ксерогелей и структурных перестроек. При кристаллизации MoO_3 со стабильной ромбической фазой, как показано в [2], наблюдается образование промежуточной гексагональной «рыхлой» структуры переменного состава, для которой характерно присутствие 5-координированных ионов Mo(V) - MoS_4 — MoS_4 —

В случае электрохимически полученного MoO₃ в отсутствие стабилизи рующих гексагональную структуру катионов гексагональная фаза не обра зуется. На пути перехода от аморфной к стабильной ромбической структуре имеет место формирование наряду с моноклинной других фаз кристаллографического сдвига, содержащих в кристаллической решетке OH-группы.

- 1. Ивановская М.И., Гурло А.Ч., Лютынская Е.В., Романовская В.В. // Журн. общ. химии 1997. Т. 67. № 11. С. 1788.
 - 2. Гурло А.Ч., Ивановская М.И. // Неорган, материалы. 1998. Т. 34. № 12. С. 1466.
 - 3. Васько А. Т. Электрохимия молибдена и вольфрама. М. 1982.
 - 4.Guefri A., Le Dao M. // J Electrochem. Soc. 1989. Vol. 136. №8. P. 2435.
- 5. Котиков Д.А. *II* Сборник работ 57-й научной конференции студентов и аспирантов Белгосуниверсигета / БГУ. Мн.. 2000. С. 112.
 - 5. Dyrec K., Labanowska M. // J. Chem. Soc. Faraday Trans. 1991. Vol. 87. №7. P. 1003.
 - 6. Serwicka E. II J. Solid Stale Chem. 1984. Vol. 51. Ne2. P. 300.
- 7. Mestl G., Verouggen N.F.D., Bosch E., Knozinger H. // Langmuir. 1996. Vol. 12. №12. P. 2961.

Поступила в редакцию 27.06.06.

Мария Ивановна Ивановская - кандидат химических наук, ведущий научный сотрудник. **Дмитрий Анатольевич Котиков** - кандидат химических наук, и о. старшего научного сотрудника.