Нетрудно убедиться, что функция V обладает свойствами V1) и V2). Применяя формулу интегрирования по частям, имеем

$$\dot{V}(u(t,\cdot),v(t,\cdot)) \leqslant \int_{0}^{1} (-u^{2}(x)-v^{2}(x)-au_{x}^{2}(x)-bv_{x}^{2}(x)) dx + C,$$

где C — некоторая постоянная, зависящая лишь от a и b. Последнее неравенство обеспечивает выполнение условий V3) и V4). Тем самым полунепрерывная полудинамическая система, порождаемая задачей (1), обладает аттрактором.

Refrences

- 1. Леваков А. А., Задворный Я. Б. Устойчивые, притягивающие множества и аттракторы полудинамических систем в нелокально компактных метрических пространствах // Дифференц. уравнения. 2015. Т. 51, № 7. С. 851–860.
 - 2. Бабин А. В., Вишик М. И. Аттракторы эволюционных уравнений. М.: Наука, 1989. 293 с.
- 3. Ладыженская О. А., Солонников В. А., Уральцева Н. Н. Линейные и квазилинейные уравнения параболического типа. М.: Наука, 1967. 736 с.

РАЗРЕШИМОСТЬ ЗАДАЧ ОПТИМИЗАЦИИ С НЕЛИНЕЙНЫМИ НЕПОТЕНЦИАЛЬНЫМИ ОПЕРАТОРАМИ

В.Г. Замураев

Белорусско-Российский университет, Могилев, Беларусь vhz@mail.by

Рассматривается задача оптимизации общего вида с нелинейным операторным уравнением состояния с непотенциальным оператором. Частный случай рассматриваемой задачи был изучен автором в работе [1], аналогичная задача с линейным операторным уравнением с B-симметричным B-положительно определенным оператором изучалась в [2].

Рассмотрим метрическое пространство C_{ad} — множество допустимых управлений и семейство гильбертовых пространств $\{H_c\}$, $c \in C_{ad}$; скалярное произведение и норму в H_c обозначим соответственно через $(\cdot, \cdot)_c$ и $||\cdot||_c$.

В каждом из пространств H_c рассмотрим нелинейный оператор N_c с плотной в H_c линейной областью $D(N_c)$, $N_c(0)=0$, имеющий на $D(N_c)$ производную Гато $N_c'(x)$, непрерывную по x, так что $(N_c'(x+ty)u,v)_c\in C_t[0,1]$ $\forall x,y,u,v\in D(N_c)$, и замыкаемый дистрибутивный оператор B_c , $D(N_c)\subset D(B_c)$, $\overline{R_{N_c}(B_c)}=\overline{\{B_cv\mid v\in D(N_c)\}}=H_c$, такие, что для любого $x\in D(N_c)$ на области $D(N_c)$ оператор $N_c'(x)$ является B_c -симметричным: $(N_c'(x)u,B_cv)_c=(N_c'(x)v,B_cu)_c$, оператор $N_c'(0)$ является B_c -положительно определенным: $(N_c'(0)v,B_cv)_c\geqslant K_{1c}||v||_c^2$, $(N_c'(0)v,B_cv)_c\geqslant K_{2c}||B_cv||_c^2$, и выполнено условие

$$(N'_c(x)v, B_cv)_c \geqslant K_{3c}(N'_c(0)v, B_cv)_c,$$

где K_{1c} , K_{2c} , K_{3c} — положительные постоянные, не зависящие от x, v.

Пусть $R(N_c)$ — множество значений оператора N_c , $f_c \in R(N_c)$. Для каждого допустимого управления c рассмотрим операторное уравнение

$$u_c \in D(N_c), \quad N_c(u_c) = f_c.$$
 (1)

Пусть F_c — обобщенное пространство Фридрихса оператора N_c , скалярное произведение и норму в F_c обозначим через $[\cdot,\cdot]_c$ и $|\cdot|_c$, B_{0c} — расширение оператора B_c по непрерывности на всё F_c .

Потребуем, чтобы для любой слабо сходящейся в F_c последовательности элементов $u_n \in D(N_c)$ выполнялось условие $\lim_{m,n\to\infty} (N_c(u_n) - N_c(u_m), B_{0c}v)_c = 0$ для любого $v \in F_c$.

При выполнении всех приведенных выше требований оператор $N'_c(0)$ может быть расширен до замкнутого B_{0c} -симметричного B_{0c} -положительно определенного обратимого на всем пространстве H_c оператора $N'_{0c}(0)$; оператор $(N'_{0c}(0))^{-1}N_c$ может быть расширен до слабо непрерывного оператора W_c , отображающего пространство F_c на все F_c , удовлетворяющего на F_c условию $[W_c(u) - W_c(v), u - v]_c \geqslant K_{3c}|u - v|_c^2$ и имеющего на F_c непрерывный обратный оператор W_c^{-1} . При этом уравнение (1) равносильно вариационному уравнению

$$u_c \in F_c$$
, $[W_c(u_c), v]_c = (f_c, B_{0c}v)_c \quad \forall v \in F_c$, (2)

которое имеет единственное решение $\forall f_c \in H_c$. Это решение непрерывно зависит от f_c и называется обобщённым (слабым) решением уравнения (1). (Детальное изложение вариационных принципов для нелинейных уравнений с непотенциальными операторами можно найти в монографии [3]).

Пусть u_c^0 — решение уравнения (2). Зададим функционал $J_c(v)$, $J: C_{ad} \times F_c \to R$, обозначим $j(c) \equiv J_c(u_c^0)$, $c \in C_{ad}$, и рассмотрим задачу отыскания среди допустимых управлений управления, доставляющего минимальное значение функционалу j(c) на C_{ad} (задача (C)).

Рассмотрим гильбертово пространство F, скалярное произведение и норму в F обозначим через $[\cdot,\cdot]$ и $|\cdot|$, и предположим что для каждого допустимого управления c задано вложение пространства F_c в пространство F.

Примем следующие предположения:

- 1) C_{ad} компакт;
- 2) существует постоянная $K_I>0$ такая, что $|v|\leqslant K_I|v|_c$ $\forall v\in F_c,\ \forall c\in C_{ad};$
- 3) из условий

$$c_n \in C_{ad}, \quad c_n \to c \in C_{ad},$$
 (3)

 $v_n \in F_{c_n}, \ v_n \rightharpoonup \bar{v}$ (слабо в F) следует $\bar{v} \in F_c$; из условия (3) следует, что $\forall v \in F_c \ \exists v_n \in F_{c_n}$ такой, что $v_n \to v$ (в F);

4) существует постоянная $K_W > 0$ такая, что

$$[W_c(u) - W_c(v), u - v]_c \geqslant K_W |u - v|_c^2$$

 $\forall u,v \in F_c, \ \forall c \in C_{ad};$ из условий (3), $u_n \in F_{c_n}, \ u_n \rightharpoonup u \in F_c,$

$$v_n \in F_{c_n}, \quad v_n \to v \in F_c$$
 (4)

следует $\lim_{n\to\infty} [W_{c_n}(u_n), v_n]_{c_n} = [W_c(u), v]_c;$

- 5) существует постоянная $K_f>0$ такая, что $|(f_c,B_{0c}v)_c|\leqslant K_f|v|_c \ \forall v\in F_c, \ \forall c\in C_{ad};$ из условий (3), (4) следует $\lim_{n\to\infty}(f_{c_n},B_{0c_n}v_n)_{c_n}=(f_c,B_{0c}v)_c;$
- 6) существует постоянная k_J такая, что $J_c(v)\geqslant k_J$ $\forall v\in F_c,\ \forall c\in C_{ad};$ из условий (3), $v_n\in F_{c_n},v_n\rightharpoonup v\in F_c$ следует $\lim_{n\to\infty}\inf J_{c_n}(v_n)\geqslant J_c(v).$

Теорема. При сделанных предположениях 1)-6) задача (C) имеет по крайней мере одно решение.

Литература

- 1. Замураев В. Г. О существовании оптимальных пространств для нелинейных функциональных уравнений // Дифференц. уравнения. 2002. Т. 38. № 6. С. 849–851.
- 2. Замураев В. Г. Pазрешимость задач оптимизации с В-симметричными B-положительно определенными операторами // XI Белоруская математическая конференция: Тез. докл. Междунар. науч. конф. Минск, 5–9 ноября 2012 г. Ч. 1. Мн.: Ин-т математики НАН Беларуси, 2012. С. 42–43.
- 3. Филиппов В. М. Вариационные принципы для непотенциальных операторов. М.: Изд-во УДН, 1985.