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Toctynuna B pepakuuio 12.11.2014.
Tamwvana Bacunvesena I'anuoyc — xanaunat GU3NKO-MaTeMaTHISCKUX HAyK, JOIEHT Kadeapsl HH)OPMAIIHOHHBIX CHCTEM YIIPaB-
neHus (aKyapTeTa IPUKITAIHON MaTeMaTHK U nHpopMaTtuku BIY.

T'ennaouit Bacunvesuu Mameees — xananiat GU3NKO-MaTeMaTHUSCKUX HAyK, TOLECHT Kadeapbl BBICIICH MaTeMaTHKH (haKyabTeTa
MIPUKJIAQHOI MaTeMaTHky 1 HHpopmatuku BI'Y.

VIK 517.938:925
B. S. KALITINE

ON THE PSEUDO-STABILITY OF SEMIDYNAMICAL SYSTEMS

BBezieHO CBOWCTBO INCEBIOYCTOHYMBOCTH KaK HEOOXOIUMOE yCJIOBHE OpOMTANbHOM YCTOHUMBOCTH 3aMKHYTHIX MHBapHUAaHTHBIX
MHOXKECTB MONYTHHAMUIECKIX CHCTEM Ha MPOU3BOIBHOM METPHUECKOM IpocTpaHcTse. [IpuBeneHa knaccuukanus ycTOHIMBOIO-
JOOHBIX CBOMCTB B (hopMe THarpaMMmbl, KOTOpasi OTpa’kaeT B3aMMOOTHOILIECHUS IICEBIOYCTOWYNBOCTH U PABHOMEPHOH MCEBI0YCTOMH-
YUBOCTH C M3BECTHBIMH XapaKTEPHCTHKAMM Kau€CTBEHHOH TEOPHU yCTOHUYMBOCTH MOMYJMHAMUYECKHX CHCTEM (MHBAPUAHTHOCTS,
YCTOHYUBOCTE, IPUTSDKEHNE U NX MOAU(HKAINN). YCTAaHOBJIECHA CBSI3b MEXK/IY MOHATHEM IICEBJOYCTOHINBOCTHU U ONPEAEICHHEM Iep-
BOTO MHTETrpaJia MOoJIyIHHAMU4ecKol cucteMbl. CHOpMYIHPOBaHBI KPUTEPHH NICEBI0YCTOHYMBOCTH B ()OPME JTOCTATOUHBIX YCIOBHI
C UCIONB30BAaHNUEM OIIPE/IENICHHO TOMOKUTENBHBIX M 3HAKOMIOCTOSIHHBIX (yHKIHiA JIsamyHoBa. JlaHEl KOMMEHTapHH K pe3ynsTraraM Ha
WTFOCTPATUBHBIX IPUMEpPaXx.

Knruesvle cnosa: nomynuHaMuueckas CUCTEMa; MOJIOKUTEIbHO MHBAPUAHTHOE MHOXECTBO; YCTOMUUBOCTB; IICEBAOYCTOMYU-
BOCTb; IEpBBIN uHTerpan; GyHKus JIsmyHosa.

Pseudo-stability property is introduced as a necessary condition of the orbital stability of closed positively invariant sets
of semidynamical systems defined on an arbitrary metric space. We give a classification of stability-like properties in the form of
a diagram. The diagram reflects the relationship between pseudo-stability and uniform pseudo-stability with known characteristics of
qualitative stability theory of motion of semidynamical systems (invariance, stability, attraction and their modifications). We establish
particular connection between the pseudo-stability notion and first integrals of semidynamical systems. The criteria of pseudo-stability
are formulated and sufficient conditions for this property with positive definite and semidefinite Lyapunov functions are provided. We
also give comments on the results with a number of illustrating examples.

Key words: semidynamical system; positively invariant set; stability; pseudo-stability; first integral; Lyapunov function.

Overview of results

Over the past 50 years development of the qualitative theory of dynamical systems has contributed greatly
to the generation of methods of topological dynamics with respect to objectives of stability theory of move-
ment [1]. In V. 1. Zubov monograph [2] author presents the research methods for problems of the stability
theory of dynamical systems (X, R, m) defined on a metric space (X, d). The author gives the basics of di-
rect Lyapunov’s method and lays the foundation of qualitative study of the structure of closed invariant sets’
neighbourhoods in terms of their stability properties. In [3—5] authors introduce an interesting idea of splitting
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the Lyapunov’s definition of asymptotic stability into two components: stability and attraction. The founda-
tions of the latter were laid by the examples of dynamic processes with the attracting, but not stable, equi-
librium. Thereafter, attracting invariant sets (attractors) were thoroughly studied. The concepts of uniform
attractor [6], weak attractor [7], etc., were introduced. This in turn has led to identification and studying of
semi-asymptotic stability and uniform asymptotic stability of invariant sets by method of Lyapunov func-
tions [7]. For locally compact dynamical systems the author in his work [8] reveals the reason for the existence
of attraction properties for invariant sets in the absence of the stability property. By introducing a new defini-
tion of «pseudo-stability», a criterion is proved [8, p. 129, theorem 3.5], stating that a missing component of
the weak attraction property of a compact invariant set to constitute an asymptotic stability property is actually
pseudo-stability. This result was further developed for dynamical systems on an arbitrary metric space in [9].
A system of differential equations in the plane x =y, y = 0 gives us a simple example of pseudo-stable,
but not stable, stationary point (0, 0). The pseudo-stability property is a necessary condition for stability in
the sense of Lyapunov. This can be easily shown on a diagram 1 [8] (S — stability, SU — uniform stability, PS —
pseudo-stability, PSU — uniform pseudo-stability, ES — equi-stability) and diagram 2 (PI — positive invariance,
A — attraction, UA — uniform attraction, WA — weak attraction, AS — asymptotic stability).

S ES PI S PS
A
Y \ 4
v -
\ Y 5
PS |« PSU
Diagr. 1. Stability and pseudo-stability Diagr. 2. Attraction and pseudo-stability

This paper contributes to further development of the theory of pseudo-stability for semidynamical systems
on an arbitrary metric space.

Definitions and notations
We recall the definitions and some properties semidynamical systems. Let X be a metric space with a func-
tion of distance d: X x X — R™. A semidynamical system on X is the triplet (X , RY, n), where T is the phase
map (n (x,7) =xt,Vxe Xand Vt e R+) satisfying the following axioms:

Dm(x,0)=x,Vxe X
D (r(x,£),T)=n(x,t+1), Vxe Xand Vt,Te RY;
3) w — is continuous.

Given a dynamical system on X, the space X and the map x: ¢t — xt (x € Xute ]R+) are respectively

called the phase space and the movement of the semidynamical system. In line with this notation, if N < X and
Ic R, then Nlisthe set NI = {x€ X:xe€ N,te I}.Forany x € X, the set Y" (x)=xR" is called the posi-
tive semi-trajectory through x (or of x). The set N < X is called positively invariant if NR™ = N. The set N is
invariant if simultaneously N and X'\ N are positively invariant sets.

We use the following concepts [10, 11]. Let A(x) be an interval of the existence of motion x:  — x¢. The map
X:t— Xxt is called an extension of the motion x: t — xz if A(X) > A(x)and xt=Xx¢ on A(x). The motion
x: t — xt is called maximal motion if for every extension y of this motion: A(y) = A(x) (and hence yt = xt on
A(x)). It is clear that the extension of motion x: t — xt, £ € R™, in the negative direction is not unique. In this
case for every € R™ with defined motion we pose xt={y e X :x e y(—t)}.

The following result is known [10, ch. I, theorem 4.5]. Let x: ¢ — xt be the maximal motion through x € X.
Then one of the following statements holds:

1) A(x) =R;

2) A(x) = [~a,, o[ for some number a, € R™;

3) A(x) = ]-a,, o[ for some number a,> 0.

For any maximal motion x:  — xt in accordance with the statement of the [10, ch. I, theorem 2] we pose:

Y(x)={yeX:y=xt,teR_, ifA(x)=R};

Y () =Y\ (%)
['(x)= {y eX:y=xt,t€[-a,,0],if A(x)= [_ax’+°°[};
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'@ ={yeX:y=xt,te]-a,0],if A(x)=]-a,,+e[}.

The sets y(x), I'(x) and F*(x) are called, respectively, the full funnel, the ultimate negative funnel and
the local negative funnel of point x.

The concept of the w-limit set L*(x) [10, 11] is introduced for each motion x: ¢ — xt of semidynamical
system, just as for the dynamic system [7].

The identification of the o-limit set L (x) is only appropriate for principal movements [12]. We introduce it
in the following way.

A pointx € Xis called a-limit point of the principal movement x: t — xt, t € R*, if there are such sequences
(xn) c Y(x) and (tn) c R™ that the following conditions are true:

1) x,(-t,)=xVn=1;

2)t, = —o0asn — +oo;

3)x, > pasn—> +oo,

We denote by N and FrN, respectively, the closure and the boundary of the set N X. Let B(N, o) = {x € X:
d(N, x) < a}, where o > 0, and we recall the following definitions [7].

A closed set M c Xis called:

* stable, if (Ve > 0)(Vm e M)(38=358(g, m) >0) = B(m, ) R" < B(M, ¢);

+ uniformly stable, if (Ve > 0)(38 > 0) = B(M, §)R" < B(M, ¢).

Pseudo-stability

In this section, we introduce the notions of pseudo-stability for closed positively invariant sets.

Definition 1. A set M < X is said to be [8, 12]:

+ pseudo-stable, if (Vx & M)(Vm e M)(3d=35(x, m)>0)=x ¢ B(m, )R

+ uniformly pseudo-stable, if (Vx ¢ M)(I6=58(x)>0) =x ¢ B(M, §)R™.

Remark 1. The introduced notions of pseudo-stability do not depend on whether a set M is closed or com-
pact. The connection between the concept of positive invariance, as well as the property of being an open or
closed set, and the notion of pseudo-stability is discussed further below. Examples of stable (and thus pseudo-
stable), but not uniformly pseudo-stable, as well as uniformly pseudo-stable, but not stable invariant sets are
given in [8, 12].

Example 1. Consider the set X = {a(p: ae R} of continuous functions ¢: R* — R where ¢(¢) = exp(t2 ),
Vte R. We enter in X the topology of uniform convergence on compacts R using metric of Bebutov [13]:

. ]
d(<pl,<r>2)=;g%mln{oglgTI(Pl(t)—cpz(t) ,;}, 9,9,€X, TeR*,

We denote X = {(pT: TE R+} and define semidynamical system (X , RY, n), where @ (y, ) =@ (y,t + 1)

is the translation of function @ (y, 7) on T in X. Then it is easy to show that the equilibrium 6 (f) =0, V¢ ¢ R"
is pseudo-stable. It is enough to use [13, p. 76, lemma 1.20] stating that for Bebutov’s metric the inequality

d ((p1 , (pz) <o is equivalent to the condition max |(p1 ® -0, (t)| < 0. One can show that the point 0 (£) =0 is
0<i<l/c

not stable in the space X.

Example 2. Consider the linear system of differential equations x = Ax, x € R", with constant (n X n)
matrix 4 and singleton set M = {0}. The set M is pseudo-stable if and only if the real parts of all eigenvalues
of matrices A are not positive.

A number of pseudo-stability properties of compact invariant set M is provided in the author’s mono-
graph [8] for a dynamical system (X, R, ) given in the locally compact metric space (X, d). It should be
noted that part of them is true for common dynamic processes studied in this article. We formulate the ones
that you can easily apply in case of a semidynamical system (X , RY, n) on an arbitrary metric space relative
to the closed positively invariant set M c X, namely:

(7) if the set M is pseudo-stable, then it is positively invariant;

(if) the open set M is pseudo-stable if and only if it is positively invariant;

(iii) if the set M is uniformly pseudo-stable, then it is closed;

(iv) if the set M is stable (uniformly stable) then it is pseudo-stable (respectively, uniformly pseudo-stable).

In [8] the classification of stable-like properties is given, combining traditional classic characteristics of in-
variant sets in terms of their stability properties, however, with the introduced new concept of pseudo-stability.

There are diagr. 1 and 2 for the case of general semidynamic system (X , R, TC) given on an arbitrary
metric space (X, d).
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Criteria pseudo-stability

The following theorems are pseudo-stability criteria.

Theorem 1. 4 set M is pseudo-stable if and only if the following conditions are true:

1) M is positively invariant;

) L (x)NM=02, Vxe X\ M.

Proof. Suppose that for a set M — X conditions 1) and 2) are met. We assume here that M is not pseudo-
stable. Then there is an element m € M such that for any § > 0 there is x € B (m, §) R". In other words, you

can specify sequences (xn) c X\ M, x,— m, and (tn) c R" such thatx,?,=m, Vn>1. Since M is positively
invariant, we can show that #, — +co as n — +<o. Indeed, if it is not, then there exists a bounded subsequence
(tnk )k21 = (tn) such that 7, — " eR" if k— +oco. In this case, the continuity of the phase map w gives:

mt" = x. However, this contradicts the positive invariance of the set M. On this basis, it can be argued that

there is a negative semi-trajectory Yy~ (x). Now, since m €7y (x), the set L (x) is non-empty. Consequently,
m € L (x) and this contradicts 2). Thus, M is pseudo-stable.

Conversely, if M is pseudo-stable, then it is positively invariant (property (7)). If the hypothesis 2) of
the theorem does not hold, then there exists a point x € X'\ M with a non-empty set L™ (x). Subsequently, you
can specify a point m e L™ (x)() M. Then, by definition, V& > 0, 3 T > 0 for which mt € B(x, ) R", and by
the arbitrariness of & > 0 it is contrary to pseudo-stability of M. Theorem 1 is proved.

Theorem 2. A subset M c X is uniformly pseudo-stable if and only if there is a neighborhood U of M, such
that the following conditions are met:

1) M is positively invariant;

2) d(y (x), M)>0, VxeU\M.

The proof of theorem 2 is similar to the proof of theorem 1.

Pseudo-stability and first integrals

We now proceed to establish some relationship between pseudo-stability and presence of first integral of
semidynamical systems.

Definition 2. A continuous function @: X x R" — R is called a first integral of semi-dynamic system
(X, R*, n) if @(xt,t)=@(x,0) for any movement x:  — xt, t > 0.

Theorem 3. 4 closed set M c X is uniformly pseudo-stable if there is a neighborhood U of M and a first
integral @:U x R* — R such that the following conditions are met:

) o(x,6)=0, Vxe M u Vt=0;

2) M is uniformly pseudo-stable with respect to set Y, = {x eU:9(x,1)=0,Vt2> 0}.

Proof. Suppose that the semi-dynamic system (X , R, n) has a first integral with the specified properties
and, however, M is not uniformly pseudo-stable. Then under the assumption 2), there exist a point x € Y,\M
in U and the sequence (xn), x, = M such that x € y*(x,), Vn > 1. This means that there exists a sequence
(tn) cR" such that x,t, = x, Vn 2 1. In this case, according to the definition of the first integral, we have
o(x,0)= (p(xn tn) = (p(xn, O), Vn > 1 and V¢ 2 0. Moving here to the limit as n — +o0, we obtain ¢@(x, 0)=0.
In other words, x € M. However, the latter contradicts the choice of point x. Thus, M is uniformly pseudo-stable.

Consider a dynamical system x=x, y=—-y, (x,y)€ R?. The set M = {(x, yeX=R*y= 0} is pseudo-
stable, since the first integral @ (x, y) = xy is equal to zero outside M, where x = 0. The set M is uniformly stable
with respect to points where x = 0, and hence uniformly pseudo-stable. According to theorem 1, M is uniformly
pseudo-stable.

Pseudo-stability and Lyapunov’s direct method

For pseudo-stability and uniform pseudo-stability we can state the following criterions in the terms of Lya-
punov’s functions.

Theorem 4. A positively invariant subset M C X is uniformly pseudo-stable if and only if there exists a func-
tion V:X — R such that:

1) V(x)>0, Vxe M and V(x,)—0 as d(x,, M)—0;

2) V(xt)<V(x), Vt=20 and Vxe X.

Proof. Suppose that the conditions 1) and 2) are met and M is not uniformly pseudo-stable. Then, there
existsx € X'| M contained in B(M, 8) R* forany 8> 0. Consequently, V(3,, )n21 (8,>0,8,—>0),3(x,)c X \M
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(xn ->M ) and El(tn)cR+ such that x,¢z, = x, Vn > 1. According to hypothesis 1) and 2), we have
0<V(x,t,)<V(x,). Therefore, V(x,)— 0asd(xt,, M)— 0, which implies that ¥ (x) = 0. This is impos-

sible in accordance with the assumption.
Conversely, suppose that M is uniformly pseudo-stable. Then, by assertion (iii), the set M is closed. We pose:

d(y—(x), M) Vxe X\ M, if A(x)=R,
V(x)=1d(T(x), M) Vxe X\ M, if A(x)=[-a,,+, (1)
d(T"(x). M) Vxe X\ M, if A(x)=]-a,,+ed.

Where T'(x) and T (x) are defined above. It is easy to see that V(xn ) —0,if d (x,, , M ) — 0. We show that
V(x)>0, Vx e X\ M. In fact, if it is not true, there exists x € X'\ M, such that V'(x) = 0. Note, that if there is
semi-trajectory Y~ (x), then Y~ (x) "M =& since MR" = M, and consequently the equality V(x) = 0 implies
the existence of sequence (tn) cR", for which d (xtn, M ) — 0. Moreover, since MR =M, t, — —oo (see
the proof of theorem 2). In this case d|y~ (x), M \) > 0, which is contrary to theorem 3, if we take into consid-
eration that M is uniformly pseudo-stable. The theorem is proved.

Hence follows the sufficient condition of pseudo-stability.

Consequence 1. 4 positively invariant set M c X is uniformly pseudo-stable if there is a function V:X — R
such that:

1)V (x)20,Vxe X\Mand V(x,)—0 if d(x,, M)—0;

D)V (xt)<V(x),Vi=20and Vx e X\ M,

3) {ye X\ M: V(y)zo}m{yeX\M: d(y" (). M)>o}=®.

Similarly, we have the following assertions.

Theorem 5. A positively invariant set M C X is pseudo-stable if and only if there is a function V:X — R
such that:

1) V(x,m)20,Vxe X\Mand Ym € M; V(x,, m)—0,if d(x,,m)—0 for me M;

) Vxt,m)<V(x,m),Vt=20,Vxe X\ Mand Vm e M.

Consequence 2. 4 positively invariant set M C X is pseudo-stable if there is a function V:X — R such that:

) V(x,m)=>0,Vx¢ Mand Vm e M, V(xn,m)—>0,ifd(xn,m)—>0as n—+oo, Vme M,

D) Vxt,m)<V(x,m),Vt=0,Vxe X\Mand Vm € M,

L ()NM=D,Yme Mand¥xe {ye X\ M:V(y,m)=0}.

Example 3. For the system of differential equations in the plane R* x=y, y=—y the closed set
M = {(x, yeR*:y= O} is uniformly pseudo-stable by theorem 3, if we pose V(x, y) = y* Note that for this
system with compact set M = (0, 0), the function (1) is defined by the condition:

V(x,y)=\/x2+y2, if y(y—x)=0 and V(x,y)=|x+y|/\/§, if xy(y—x)<0.

The function V' (x,y) guarantees the property of pseudo-stability for point (0, 0) and is not continuous.

Remark 2. 1. If M is singleton, the difference between the hypothesis of theorem 4 (on the uniform pseudo-
stability) and hypothesis of [13, p. 111, theorem 1.26] (on the Lyapunov stability) is that function / in theo-
rem 4 can be equal to zero outside the set M. This circumstance applies to the comparison of the consequence 1
with the theorem of stability in the method of semidefinite Lyapunov’s functions [14].

2. Another situation occurs when we compare hypotheses of theorem 5 (on the pseudo-stability) with those
of [2, theorem 12] (on the uniform stability) in case of closed invariant set M. Here the hypotheses of [2, theo-
rem 12] are more severe than the hypotheses of theorem 5.
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Bopuc Cepzeegun Kanumun — xannunar Gu3nKo-MaTeMaTHIECKUX HAyK, Tpodeccop Kadeapsl aHATUTHIECKOI SKOHOMUKH U KO-
HOMETPHUKH S9KOHOMHYECKOTO (akynsrera bI'Y.

VK 539.3+(616.314-089.23)
C. M. BOCAKOB, A. @. MCEJIATHU (JIUBVA), K. C. IOPKEBUY

MOAEJIMPOBAHUE HAITPS’KEHHO-AE®@OPMHUPOBAHHOI'O COCTOAHUS
HEPUOJOHTAJIBHOU CBA3KU ITPU HAYAJIBHBIX ITIEPEMEINEHUAX KOPHSA 3YBA

OrnpeneneHbl THAPOCTATHUECKHE HANPSHKEHNUS, BO3HUKAIOIINE B TKAHIX MEPUOAOHTA, IPU MOCTYNATEIbHbIX TIEPEMEIIEHHUAX KOPHS
3y0a. BHeMIHsSI MOBEPXHOCTH KOPHS 3y0a M BHYTPEHHSS TIOBEPXHOCTH MEPHUOJOHTATBHON CBA3KN OMHCBHIBAIOTCS YPAaBHEHUEM JBYIIO-
J0CTHOTO THnepoonona. TommHa MepuooHTa O HOPMaIK K TIOBEPXHOCTH SBIISETCS MOCTOSHHON BenmanHOH. Kopens 3y0a mpen-
TIoaraeTcst abCOMOTHO TBEPABIM TEJIOM.

Ha ocnoBanum 3HaueHHnii, OIaronpuATHEIX IJISI IEPECTPOHKH KOCTHON TKaHU HAIPSDKCHUH, YCTAHOBIICHBI JHAIa30HBI HATPY3KH
JUIS TOCTYIATEIEHOTO OPTOIOHTHYECKOTO IepeMeleHus 3yooB. [loka3ano, 4To nomydeHHbIe 3HAYEHHs Harpy3KH MPUBOAT K 1edop-
MalMsAM TKaHeH epHOIOHTa, KOTOPble COOTBETCTBYIOT JINHEHHO-YIIPYTOi MOJIeIN IEPUOLOHTaIbHOU cBA3KU. [IpoBesieH cpaBHUTEb-
HBII aHAJIN3 PE3yNbTaTOB pacyeTa HOPMaJIbHbIX HAPSIKEHUH HA OCHOBAHUM aHAJIMTUYECKON M KOHEYHO-JIEMEHTHOHN MozieTIeH.

Knrwouesvie cnosa: TNEPpUOAOHTAIbHASA CBA3Ka; KOPEHb 3}’63; Z[ByHOJ'IOCTHI:IfI FI/IHGP6OJ’IOI/I£[; HavYyaJIbHOC NEPEMCIICHUE, THAPOCTaTH-
YCCKHUE HAIIPSXKEHUS; HOPMAJIbHbBIC Z[eCI)OpMaL[I/II/I; MCTOJ KOHCYHBIX 3JIEMCHTOB.

Hydrostatic stresses in the periodontal ligament under translational displacement of the tooth root were defined. The external
surface of the tooth root and the internal surface of the periodontal ligament were described by the equation of a two-sheet hyperboloid.
The thickness of the periodontal ligament along normal to the tooth root surface is constant. The tooth root was assumed to be rigid. The
system of equations for the translational displacements and rotation angles of the tooth root in periodontal ligament was formulated.

Load ranges for translational orthodontic tooth movement were defined based on the magnitudes of stresses favorable to bone
remodelling. The obtained values of the load lead to the appearance of the periodontal tissue strains, corresponding to a linear elastic
model of the periodontal ligament. Comparative analysis of the results of the calculation of normal stresses on the basis of analytical
and finite element models was carried out.

Key words: periodontal ligament; root of the tooth; two-sheet hyperboloid,; initial displacement; hydrostatic stresses; normal strain;
finite element method.

OpTonOHTHYECKOE JICYCHHE HENPaBHJIBHOIO NPHUKYCA W aHOMAJIBHOTO PACIHOJIOKEHUS 3yOOB SIBIISETCS
CJIO)KHOM CTOMATOJIOTUYECKOM MpoLeaypoi, KOTopas, Kak MpaBHiIo, MOJpa3yMeBaeT MOCIe10BaTeIbHOE BbI-
TIOJTHEHHE OOJBIIOTO KOMMYECTBAa TEPANeBTHUECKHUX DTaroB. B 3aBUCUMOCTH OT BEIMYUHBI U TPOIOIDKH-
TEJILHOCTH CHUJIOBOTO BO3ACUCTBHSI MOTYT BO3HMKAaTh HavyajbHBIE U OPTOAOHTUYECKHE MepeMEUICHHUs 3y00B.
HavanbHbie cMereHnst 3y00B BBI3BIBAIOTCS KPATKOBPEMEHHOH HArpy3KOM, IMOCIE CHATHS KOTOPOU 3y0 BO3-
Bpalaercsi Ha npekHee Mecto. [Ipu 3ToM nereHepaTBHbIE U HEOOpPATHMbIE W3MEHEHUS! MIEPUOJOHTATBEHON
TKaHU OTCYTCTBYIOT, JAe(opMals ajJbBEOJSIPHOTO OTPOCTKAa oOparnMa M MMEeT HU3KyIo amrumTyny [1, 2].
Ecnu otkitonenue 3y0a coxpaHseTcsl B TEYSHHE JOITOr0 IPOMEKYTKA BPEMEHH, HAPSHKSHUS U JiehopMaIiiu
B IIEPUOJOHTAILHOMN CBSI3KE BBI3BIBAIOT NPOLIECC NEPECTPOMKN KOCTHOW TKAaHH, KOTOPBIIA IMPUBOAMUT K OPTO-
TOHTUYECKOMY JIBIDKEHHIO KOPHS 3y0a 1 M3MEHEHHIO ero rmosiokeHus [2—5]. OcHOBBIBasICh Ha 00J1€€ BEICOKON
YIPYrOCTH TEPHOIOHTA 1O CPABHEHHUIO C KOCTHBIMH CTPYKTYpaMu M 3y0amu, Kak MPaBHJIO, MPEAIOJIATaIoT,
YTO TIEPUOJOHT OTIPEACIISICT BEININHY HA4aIbHOTO TTepeMeIrieHus 3yoa [3, 6].

VYcTaHOBIEHUIO HA4aIbHOW MOABMKHOCTH OJHOKOPEHHBIX M MHOTOKOPEHHBIX 3yOOB IOCBSILEHBI MHOTO-
YUCJICHHBIC HCCIICOBAHMSI, OCHOBAHHBIC HA MCITOJIb30BAHUH METOJIa KOHEUHBIX 3J1eMeHTOB [ 1, 6—10] nnu ana-
nutudeckux mozenen [11-14]. IlonyueHHble pe3yapTaThl HCIONb3YIOTCS B XOAE€ KIMHUUYECKON Tepanuu s
BUPTYaJIBHOTO TUNIAHUPOBAHHS OPTOIOHTHYECKOTO IBHKEHHS 3yO0B 0€3 moTeph BpeMEHH H AUCKoMpopTa A
naruenTa. [1oaxonsl K KOMIBIOTEPHOMY MOZEITUPOBAHHUIO JOJITOCPOYHOTO W KPATKOCPOYHOTO TIEpPEeMEIeHUN
3y00B npencTasiensl B padotax [ 15—18]. Hactosiee nccnenoBanne pa3BuBaeT 3TO aKTyaJIbHOE HallpaBJICHHUE.
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