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An ordinary differential equation (ODE) of the first order solved with respect to the derivative
can be always linearized by a suitable point transformation. However, in this case the linearization
procedure is not efficient since finding the linearizing transformation is as hard as solving the
equation under consideration. For the second order ODEs the situation is different. In this case
only equation of the form

y′′ + F3(x, y)(y′)3 + F2(x, y)(y′)2 + F1(x, y)y′ + F (x, y) = 0. (1)

may be a candidate for linearization. Sophus Lie [1] designed the following linearizability criterion
for equation (1): the equation is linerizable by a point transformation if and only if

(F3)xx − 2(F2)xy + (F1)yy = (3F1F3 − F 2
2 )x − 3(FF3)y − 3F3Fy + F2(F1)y,

Fyy − 2(F1)xy + (F2)xx = 3(FF3)x + (F 2
1 − 3FF2)y + 3F (F3)x − F1(F2)x.

A similar criterion was designed for third- and forth-order ODEs [2, 3]. By applying the point
transformation

u = f(x, y), t = g(x, y), J = fxgy − fygx 6= 0

to a linear ODE of the n -th order (whose general form is determined by Laguerre’s theorem):

u(n)(t) +
n−3∑

i=0

Ai(t)u(i)(t) = 0,

we obtain

y(n)(x) +
P (y(n−1), . . . , y′)
J(gx + gyy′)n−2

= 0. (2)

Here the coefficients of polynomial P are differential polynomials in f, g. The formula (2) defines
the form of an equation to be a candidate for linearization.

Now one asks whether a given ODE of the rational form solved with respect to the highest
order derivative

y(n)(x) +
M(y(n−1), . . . , y′)
N(y(n−1), . . . , , y′)

= 0

can be linearized by a point transformation. In other words, whether there exist functions f, g
such that the equality

P (y(n−1), . . . , y′)
J(gx + gyy′)n−2

=
M(y(n−1), . . . , y′)
N(y(n−1), . . . , , y′)

of rational functions in (y(n−1), . . . , y′) holds. The last equality is equivalent to the polynomial
one

P (y(n−1), . . . , y′)N(y(n−1), . . . , y′)−M(y(n−1), . . . , y′)J(gx + gyy
′)(n−2) = 0.

in (y(n−1), . . . , y′). Since any polynomial is identically zero if and only if its coefficients are zero
ones, the linearizability check is reduced to solvability of the overdetermined system of nonlinear
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partial differential equations (PDEs). In addition to the last system one more equation must be
taken into account. This equation provides dependence of the functions Ai(t) on t only:

(Ai(x, y))xgy − (Ai(x, y))ygx = 0.

The consistency of any polynomially-nonlinear PDE system can be verified algorithmically by
using the differential Thomas decomposition [4]. In doing so, the unknown functions are f, g, Ai

and their arguments are (x, y).
The suggested linearizability test is rather simple and efficient. It is implemented in Maple

and can be downloaded at: http://www.lyakhov.com.
For high-order ODEs, their linearizability is quite exceptional and its verification may need

a large volume of symbolic algebraic computation. By this reason it makes sense to throw away
apparently inapplicable cases. Thus, to admit linearization, the Lie symmetry algebra of point
symmetries for an ODE must have dimension that is not less than the dimension of the symmetry
algebra for a linear ODE of the same order. In other words, the dimension of symmetry algebra
for the linearizable equation must be strictly higher than the order of the equation. It should
be noted that the dimension of Lie symmetry algebra of the infinitesimal transformations can be
algorithmically determined without integration of the determining equations [5].

It is remarkable that the second-order ODEs are linearizable if and only if their symmetry
algebra is of maximally possible dimension equal to 8 [6]. As to higher order ODEs, their lin-
earizability can be detected by inspection of the abstract Lie symmetry algebra that can also be
found without integration of the determining equations [7].

Remark. Apart from ODEs with polynomial coefficients, the suggested algorithmic approach
is also applicable to some cases when the coefficients of an ODE include elementary functions of
the independent variable or/and also special functions defined by algebraic differential equations.
Furthermore, our approach can be readily generalized to systems of ODEs [8, 9].
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