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Corollary 3. For the existence of a unique positive solution of the problem (15), (21) it is
necessary and sufficient that the real parts of the eigenvalues of the matrix (pik)n

i,k=1 be negative.
Corollary 4. For the existence of a unique positive solution of the problem (16), (22) it is

necessary and sufficient that the matrix H = (hik)n
i,k=1 satisfy the inequality (13).

Remark 2. In the conditions of Theorem 2 and its corollaries, the functions qi (i = 1, . . . , n)
may have singularities of arbitrary order in the second argument. For example, in (14), (15) and
(16) we may assume that

qi(t, x) = qi1(t)x−µi1 + qi2(t) exp(x−µi2) (i = 1, . . . , n),

where µi1 > 0, µi2 > 0 (i = 1, . . . , n), and qik : [a, b] → R+ (i = 1, . . . , n; k = 1, 2) are
continuous functions such that qi1(t) + qi2(t) 6≡ 0 (i = 1, . . . , n).
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Theorem. Let F (t, x) be Mironenko reflecting function [1, 2] of the differential system ẋ =
= X(t, x) and ∆(t, x) be a solution of the system ∆t + ∆xX(t, x) − Xx(t, x)∆ = µ∆, where
µ(t, x) is a scalar function, for which µ(−t, F (t, x)) + µ(t, x) ≡ 0. Then for every scalar odd
function α(t) system ẋ = X(t, x) + α(t)∆(t, x) has the same reflecting function F (t, x).

This theorem generalizes the theorem of V.V. Mironenko [3].
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