К ПРИМЕРУ Р.Э. ВИНОГРАДА НЕУСТОЙЧИВОСТИ ПОКАЗАТЕЛЕЙ ЛЯПУНОВА ПРАВИЛЬНЫХ СИСТЕМ

Н.С. Нипарко

Белорусский государственный аграрный технический университет, Минск, Беларусь $\mathsf{nad}\text{-}\mathsf{den}\mathsf{@mail}.\mathsf{ru}$

Рассмотрим линейную дифференциальную систему

$$\dot{x} = A(t)x, \quad x \in \mathbb{R}^n, \quad t \geqslant 0,$$
 (1)

порядка $n \geqslant 2$, матрица коэффициентов $A(\cdot)\colon [0,+\infty) \to \operatorname{End} \mathbb{R}^n$ которой кусочно-непрерывна и ограничена на временной полуоси $t\geqslant 0$. Через $\lambda_1(A)\leqslant\ldots\leqslant\lambda_n(A)$ обозначим показатели Ляпунова системы (1). Система (1) называется правильной [1, с. 38], если существует предел $\lim_{t\to +\infty} t^{-1} \int_0^t \operatorname{Sp} A(\tau) \, d\tau$, где $\operatorname{Sp} A(\cdot)$ — след матрицы $A(\cdot)$, и имеет место равенство

$$\lambda_1(A) + \ldots + \lambda_n(A) = \lim_{t \to +\infty} \frac{1}{t1} \int_0^t \operatorname{Sp} A(\tau) d\tau.$$

Класс правильных систем (1) обозначим через \mathcal{R}_n и, отождествляя систему (1) и ее матрицу коэффициентов, принадлежность системы (1) классу правильных систем записываем как $A \in \mathcal{R}_n$.

Класс правильных систем введен А. М. Ляпуновым [1, с. 38] и является следующим после класса приводимых систем классом систем с переменными коэффициентами, по своим свойствам наиболее близким классу систем с постоянными коэффициентами. Так, правильные системы сохраняют [1, с. 44–55] условную экспоненциальную устойчивость, а также размерность экспоненциально устойчивого многообразия и показатель асимптотики его решений при возмущениях высшего порядка малости. Поскольку правильные системы по своим свойствам должны быть близки системам с постоянными коэффициентами, а для последних показатели Ляпунова, как доказано К. П. Персидским, устойчивы при убывающих к нулю возмущениях, то одно время предполагалось справедливой гипотеза о том, что убывающие к нулю возмущения матрицы коэффициентов правильной системы не изменяют показателей Ляпунова системы, т. е. если $A \in \mathcal{R}_n$ и кусочно-непрерывная $n \times n$ -матрица $Q(\cdot)$ такова, что $\|Q(t)\| \to 0$ при $t \to +\infty$, то показатели Ляпунова системы (1) и показатели Ляпунова $\lambda_1(A+Q) \leqslant \ldots \leqslant \lambda_n(A+Q)$ возмущенной системы

$$\dot{y} = (A(t) + Q(t))y, \quad y \in \mathbb{R}^n, \quad t \geqslant 0,$$

совпадают: $\lambda_k(A) = \lambda_k(A+Q)$ при всех $k=\overline{1,n}$. Справедливость этой гипотезы была подтверждена для некоторых подклассов класса правильных систем в работах Б.Ф. Былова и И.Г. Малкина. Однако, в общем случае эта гипотеза оказалась неверной: первые контрпримеры к ней построены в работах Р.Э. Винограда [2, 3]. Позже В.М. Миллионщиков усилил этот результат, доказав [4], что свойство неустойчивости показателей Ляпунова при убывающих к нулю возмущениях имеет место и для введенного им класса статистически правильных систем — специального подкласса класса правильных систем.

В работе [2] Р. Э. Виноградом построена такая система $A \in \mathcal{R}_2$ и такая кусочно-непрерывная (2×2) -матрица $Q(\cdot)$, удовлетворяющая при всех $t \geq 0$ оценке $\|Q(t)\| \leq \mathrm{const} \times \exp(-\sqrt{t})$, что $\lambda_2(A+Q) > \lambda_2(A)$. Естественно возникает вопрос, сколь быстро может убывать к нулю норма кусочно-непрерывной матрицы-возмущения, чтобы это возмущение могло изменить показатели Ляпунова правильной системы. Результат в противоположном

направлении — об устойчивости показателей Ляпунова правильных систем — хорошо известен и вытекает из теоремы Богданова — Гробмана [5, 6], вследствие которой если матрицавозмущение $Q(\cdot)$ удовлетворяет условию $\lim_{t\to+\infty}t^{-1}\ln\|Q(t)\|<0$, то такое возмущение не изменяет показателей Ляпунова правильной системы. Поэтому, чтобы матрица-возмущение $Q(\cdot)$, норма которой убывает к нулю на бесконечности, могла изменять показатели Ляпунова правильной системы, необходимо должно выполняться равенство $\lim_{t\to+\infty}t^{-1}\ln\|Q(t)\|=0$.

Это утверждение близко к достаточному, как показывает следующая

Теорема. Для любого $n \ge 2$, какова бы ни была положительная функция $\theta(t)$, $t \ge 0$, монотонно возрастающая $\kappa + \infty$, для которой $\theta(t)/t \to 0$ при $t \to +\infty$, существуют система $A \in \mathcal{R}_n$ и кусочно-непрерывная $n \times n$ -матрица $Q(\cdot)$, удовлетворяющая при всех $t \ge 0$ оценке $\|Q(t)\| \le \operatorname{const} \exp(-\theta(t))$, такие, что справедливо неравенство

$$\lambda_n(A+Q) > \lambda_n(A)$$
.

В частности, взяв в этой теореме $\theta(t) \equiv \sqrt{t}$, получаем пример Р.Э. Винограда [2]. Доказательство теоремы основывается на конструкции работ [2, 3] с использованием δ -характеристической последовательности функции $\theta(\cdot)$ [7].

Литература

- 1. Ляпунов А. М. Собр. соч. В 6-ти т. Т. 2. М.-Л.: Изд-во АН СССР, 1956. 476 с.
- 2. Виноград Р.Э. Неустойчивость характеристических показателей правильных систем // Докл. АН СССР. 1953. Т. 91. № 5. С. 999—1002.
- 3. Виноград Р. Э. Отрицательное решение вопроса об устойчивости характеристических показателей правильных систем // Прикл. мат. и мех. 1953. Т. 17. Вып. 6. С. 645–650.
- 4. Миллионщиков В. М. *О неустойчивости характеристических показателей статистически правильных систем* // Мат. заметки. 1967. Т. 2. Вып. 3. С. 315–318.
- 5. Гробман Д. М. *Характеристические показатели систем, близких к линейным* // Мат. сб. 1952. Т. 30. № 1. С. 121–166.
- 6. Богданов Ю. С. Характеристические числа систем линейных дифференциальных уравнений // Мат. сб. 1957. Т. 41. № 4. С. 481–498.
- 7. Барабанов Е. А. Точные границы крайних показателей Ляпунова линейных дифференциальных систем при экспоненциальных и степенных возмущениях: автореф. дисс. . . . канд. физ.-мат. наук; Белорус. гос. ун-т. Мн., 1984. 15 с.

ПОСТРОЕНИЕ ЛИНЕЙНОЙ СИСТЕМЫ ПФАФФА С ПРОИЗВОЛЬНЫМ ОГРАНИЧЕННЫМ НЕСВЯЗНЫМ НИЖНИМ ХАРАКТЕРИСТИЧЕСКИМ МНОЖЕСТВОМ ПОЛОЖИТЕЛЬНОЙ m-МЕРЫ ЛЕБЕГА

А.С. Платонов 1 , С.Г. Красовский 2

 1 Командно-инженерный институт МЧС Беларуси, Минск, Беларусь alexpltn@mail.ru

 2 Институт математики Национальной академии наук Беларуси, Минск, Беларусь $\sf kras@im.bas-net.by$

Рассматриваем линейную вполне интегрируемую [1, с. 14–24; 2, с. 16–26] систему Пфаффа

$$\frac{\partial x}{\partial t_i} = A_i(t)x, \quad x \in \mathbb{R}^n, \quad t = (t_1, t_2, \dots, t_m) \in \mathbb{R}_+^m, \quad i = \overline{1, m}, \tag{1}$$

с ограниченными непрерывно дифференцируемыми в $\mathbb{R}_+^m = \{t \in \mathbb{R}^m \mid t \geqslant 0\}$ матрицами коэффициентов $A_i(t)$. Нижний характеристический [3] p[x] = p векторы нетривиального решения $x : \mathbb{R}_+^m \to \mathbb{R}^n \setminus \{0\}$ системы (1) будем определять условиями

$$l_x(p) \equiv \lim_{t \to \infty} \frac{\ln \|x(t)\| - (p, t)}{\|t\|} = 0, \quad l_x(p + \varepsilon e_i) < 0 \quad \forall \varepsilon > 0, \quad i = 1, \dots, m,$$