ЭКСПОНЕНЦИАЛЬНАЯ УСТОЙЧИВОСТЬ РЕШЕНИЙ СИСТЕМ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ С РАЗРЫВНЫМИ КОЭФФИЦИЕНТАМИ

И.В. Качан

Белгосуниверситет, факультет прикладной математики и информатики, Минск, Беларусь ilyakachan@gmail.com

Рассмотрим систему дифференциальных уравнений

$$\frac{dy(t)}{dt} = A(t)y(t) + f(y(t)), \quad t \geqslant 0,$$
(1)

где $A(t)\colon \mathbb{R}^+ \to \mathbb{R}^{d\times d}$ — кусочно непрерывная функция, а $f\colon \mathbb{R}^d \to \mathbb{R}^d$ — измеримая по Борелю функция, имеющая линейный порядок роста (т.е. существует C>0 такое, что $||f(y)|| \leq C(1+||y||)$ для любых $y \in \mathbb{R}^d$), f(0) = 0. Определим многозначное отображение $F \colon \mathbb{R}^d o 2^{\mathbb{R}^d}$ следующим образом:

$$F(y) = \bigcap_{\delta > 0} \overline{\operatorname{co}} \left[f([y]_{\delta}) \right]_{\delta}.$$

Определение 1. Непрерывная функция $y(t), t \ge 0$ называется решением системы (1), если существует измеримая по Борелю функция $v \colon \mathbb{R}^+ \to \mathbb{R}^d$ такая, что:

1) $v(t) \in F(y(t))$ для почти всех $t \geqslant 0$ и $\int_0^T |v(t)| \, dt < \infty$ для всех $T \in \mathbb{R}^+$;

- 2) для любых $t \in \mathbb{R}^+$ выполняется равенство

$$y(t) = K(t,0)y(0) + \int_{0}^{t} K(t,s)v(s) ds,$$

где K(t,s) — матрица Коши однородный системы

$$\frac{dy}{dt} = A(t)y(t). (2)$$

При сделанных предположениях относительно A(t) и f(y) решение системы (1) существует ([1, с. 117, 122]).

Определение 2. Нулевое решение системы (1) экспоненциально устойчиво, если для каждого решения y(t) этой системы с достаточно малым значением ||y(0)|| справедливо неравенство

$$||y(t)|| \le N||y(0)||e^{-\alpha t}, \quad t \ge 0,$$

где N и α — положительные постоянные, не зависящие от выбора решения y(t).

Теорема. Предположим, что существуют постоянные C > 0, m > 1 такие, что:

- 1) $||f(y)|| \leq C||y||^m$ в некоторой окрестности нуля $U_R = \{y \in \mathbb{R}^d : ||y|| \leq R\};$
- $(m-1)\lambda_d+\sigma_\Gamma<0,\ \epsilon\partial e\ \lambda_d\ -c$ тарший (наибольший) характеристический показатель cucmemu (2), σ_{Γ} — $nokaзamenь неправильности <math>\Gamma poбмана$ (см. [2]).

Тогда нулевое решение системы (1) является экспоненциально устойчивым.

Литература

- 1. Леваков А. А. Стохастические дифференциальные уравнения. Мн.: БГУ, 2009.
- 2. Изобов Н. А. Введение в теорию показателей Ляпунова. Мн.: БГУ, 2006.