$$\lim_{\sigma \to \sigma_0 - 0} N_2(\sigma) \supset N_2(\sigma_0) \quad \forall \ \sigma_0 > 0,$$

$$\lim_{\sigma \to \sigma_0 - 0} N_3(a, \sigma) = N_3(a, \sigma_0) \quad \forall \ \sigma_0 > 0.$$

В заключение отметим, что предельные множества $N_i(\sigma)$, в отличие от множеств неприводимости $N_i(a,\sigma)$, являются инвариантными относительно преобразований Ляпунова.

Литература

- 1. Изобов Н. А., Мазаник С. А. *Общий признак приводимости линейных дифференциальных систем и свойства коэффициентов приводимости* // Дифференц. уравнения. 2007. Т. 43, № 2. С. 191—202.
- 2. Изобов Н. А., Мазаник С. А. *Об асимптотически эквивалентных линейных системах при экспоненциально убывающих возмущениях* // Дифференц. уравнения. 2006. Т. 42, № 2. С. 168–174.
- 3. Изобов Н. А., Мазаник С. А. О множествах линейных дифференциальных систем, κ которым неприводимы возмущенные линейные системы // Дифференц. уравнения. 2011. Т. 47, № 11. С. 1545–1550.
- 4. Изобов Н. А., Мазаник С. А. *Параметрические свойства мноэсеств неприводимости* линейных дифференциальных систем // Дифференц. уравнения. 2015. Т. 51, № 8. С. 979–989.

СТРОЕНИЕ МНОЖЕСТВ ПОЛУНЕПРЕРЫВНОСТИ СНИЗУ И ПОЛУНЕПРЕРЫВНОСТИ СВЕРХУ ПОКАЗАТЕЛЕЙ ЛЯПУНОВА СЕМЕЙСТВА МОРФИЗМОВ РАССЛОЕНИЙ МИЛЛИОНЩИКОВА

М.В. Карпук

Институт математики Национальной академии наук Беларуси, Минск, Беларусь m.vasilitch@gmail.com

В работе [1] В. М. Миллионщиков доказал, что для показателя Ляпунова $\lambda_i: B \to \mathbb{R}$, $i=\overline{1,n}$, семейства морфизмов n-мерного расслоения Миллионщикова (E,p,B) типично по Бэру свойство полунепрерывности сверху, т. е., другими словами, множество точек полного метрического пространства B, в которых показатель λ_i полунепрерывен сверху, содержит плотное в B множество типа G_{δ} . В частности, это означает [2], что для семейства

$$\dot{x} = A(t, \mu)x, \quad x \in \mathbb{R}^n, \quad t \geqslant 0, \tag{1}$$

линейных дифференциальных систем с непрерывной зависимостью решений от параметра μ , принадлежащего полному метрическому пространству B, матрица $A(\cdot,\cdot)$ коэффициентов которого при каждом фиксированном $\mu \in B$ кусочно-непрерывна и ограничена на временной полуоси $t \geqslant 0$, показатель Ляпунова $\lambda_i(\cdot)$, $i = \overline{1,n}$, его систем, рассматриваемый как функция параметра, в типичной точке полунепрерывен сверху.

Напомним (см., например, [3, с. 104]), что точка x_0 метрического пространства \mathcal{M} называется точкой полунепрерывности сверху (полунепрерывности снизу) функции $f: \mathcal{M} \to \mathbb{R}$, если для любой последовательности $(x_k)_{k \in \mathbb{N}}$ точек пространства \mathcal{M} , сходящейся к точке x_0 , справедливо неравенство $f(x_0) \geqslant \overline{\lim}_{k \to +\infty} f(x_k)$ (неравенство $f(x_0) \leqslant \underline{\lim}_{k \to +\infty} f(x_k)$).

Естественно возникает вопрос, что представляют собой множество точек полунепрерывности сверху, а также множество точек полунепрерывности снизу показателя Ляпунова λ_i , $i=\overline{1,n}$, семейства морфизмов n-мерного расслоения Миллионщикова и, в частности, семейства (1). В докладе получен полный ответ на поставленный вопрос. Известно, что в отличие

от множества точек полунепрерывности сверху множество точек полунепрерывности снизу показателя Ляпунова может быть пустым: для каждого $n \in \mathbb{N}$ такие семейства (1) построены в работах [4] и [5] (пространство B параметров в работе [4] — канторово множество, а в работе [5] — отрезок [0,1]).

В работах [6, 7] доказано, в частности, что показатель Ляпунова $\lambda_i: B \to \mathbb{R}$ семейств морфизмов расслоений Миллионщикова является функцией класса $(^*, G_\delta)$. (Функция $f: \mathcal{M} \to \mathbb{R}$ принадлежит [8, с. 223–224] классу $(^*, G_\delta)$, если для каждого $r \in \mathbb{R}$ ее множество Лебега $[f \geqslant r]$ — прообраз $f^{-1}([r, +\infty))$ замкнутого полуинтервала $[r, +\infty)$ — является G_δ -множеством, т.е. представим в виде счетного пересечения открытых в \mathcal{M} множеств.) Борелевский тип множества точек полунепрерывности снизу и множества точек полунепрерывности сверху функции класса $(^*, G_\delta)$ и, в частности, показателя Ляпунова описывает

Теорема 1. Множество точек полунепрерывности снизу функции класса $(*, G_{\delta})$ является $F_{\sigma\delta}$ -множеством, а множество ее точек полунепрерывности сверху является G_{δ} -множеством.

Доказательство теоремы 1 основывается на характеризации точек полунепрерывности снизу (сверху) отображения как точек непрерывности в некоторой специальной (своей для каждого типа полунепрерывности) топологии на множестве \mathbb{R} .

Следующая теорема — простое следствие теоремы 1 — усиливает теорему Миллионщикова [1] о типичности множества точек полунепрерывности сверху показателя Ляпунова.

Теорема 2. Множество точек полунепрерывности сверху любого показателя Ляпунова семейства морфизмов расслоения Миллионщикова является всюду плотным в базе расслоения множеством типа G_{δ} .

Назовем кортеж (M_1,\ldots,M_n) подмножеств полного метрического пространства B набором множеств полунепрерывности сверху (снизу) семейства морфизмов n-мерного расслоения Миллионщикова с базой B, если M_i , $i=\overline{1,n}$, — множество точек полунепрерывности сверху (снизу) его i-го показателя Ляпунова λ_i .

Теорема 3. Для любого $n \in \mathbb{N}$ кортеж (M_1, \ldots, M_n) подмножеств полного метрического пространства B тогда и только тогда является набором множеств полунепрерывности сверху семейства морфизмов n-мерного расслоения Миллионщикова с базой B, когда каждое множество M_i , $i = \overline{1,n}$, представляет собой всюду плотное в пространстве B множество типа G_δ , и набором множеств полунепрерывности снизу, когда каждое множество M_i , $i = \overline{1,n}$, представляет собой множество типа $F_{\sigma\delta}$, содержащее все изолированные точки пространства B.

Отметим, что, как следует из доказательства теоремы 2 в [7], теорема 3 справедлива и для того частного случая расслоений Миллионщикова, которые порождаются семействами (1), т. е. для любого кортежа (M_1, \ldots, M_n) подмножеств полного метрического пространства B, удовлетворяющего условиям первой (второй) части теоремы 3 существует семейство (1), множество точек полунепрерывности сверху (снизу) i-го показателя Ляпунова которого совпадает с множеством M_i , $i = \overline{1, n}$.

Литература

- 1. Миллионщиков В. М. Tипичное свойство показателей Ляпунова // Мат. заметки. 1986. Т. 40. Вып. 2. С. 203—217.
- 2. Миллионщиков В. М. Показатели Ляпунова как функции параметра // Мат. сб. 1988. Т. 137. № 3. С. 364—380.
 - 3. Энгелькинг Р. Общая топология. М.: Мир, 1986. 752 с.
- 4. Ветохин А. Н. *К задаче о минорантах показателей Ляпунова //* Дифференц. уравнения. 2013. Т. 49. № 7. С. 950–952.
- 5. Ветохин А. Н. O множестве точек полунепрерывности снизу показателей Ляпунова линейных систем, непрерывно зависящих от вещественного параметра // Дифференц. уравнения. 2014. Т. 50. № 12. С. 1669—1671.

- 6. Карпук М. В. Точная бэровская характеристика показателей Ляпунова семейств морфизмов метризованных векторных расслоений // Докл. НАН Беларуси. 2013. Т. 57. № 2. С. 11–16.
- 7. Карпук М. В. Показатели Ляпунова семейств морфизмов метризованных векторных расслоений как функции на базе расслоения // Дифференц. уравнения. 2014. Т. 50. № 10. С. 1332–1338.
 - 8. Хаусдорф Ф. Теория множеств. М.-Л.: ОНТИ, 1937. 304 с.

СООТНОШЕНИЯ МЕЖДУ ГЕНЕРАЛЬНЫМИ ПОКАЗАТЕЛЯМИ ЛИНЕЙНЫХ ДИФФЕРЕНЦИАЛЬНЫХ СИСТЕМ

А.Ф. Касабуцкий, Н.Г. Серебрякова

Белорусский государственный аграрный технический университет, Минск, Беларусь an _kasabutski@tut.by, serebryakova@tut.by

Рассмотрим линейную дифференциальную систему

$$\dot{x} = A(t)x, \quad x \in \mathbb{R}^n, \quad t \geqslant 0,$$
 (1)

размерности $n \geqslant 2$ с кусочно-непрерывной и равномерно ограниченной $\sup_{t\geqslant 0} \|A(t)\| < +\infty$) на временной полуоси $t\geqslant 0$ матрицей коэффициентов. Класс всех таких систем обозначается через \mathcal{M}_n . Считаем, что на классе \mathcal{M}_n задана метрика равномерной сходимости на полуоси коэффициентов. Через $X_A(\cdot,\cdot)$ обозначим матрицу Коши системы (1).

Верхний $\Omega^0(A)$ и нижний $\omega_0(A)$ генеральные (особые) показатели системы (1) задаются равенствами [1, с. 172; 2, с. 110]

$$\Omega^{0}(A) = \overline{\lim}_{t \to \tau \to +\infty} \frac{1}{t - \tau} \ln \|X_{A}(t, \tau)\| \quad \text{if} \quad \omega_{0}(A) = \underline{\lim}_{t \to \tau \to +\infty} \frac{1}{t - \tau} \ln \|X^{-1}(t, \tau)\|^{-1}.$$
 (2)

Иногда, как, например, в [1, с. 172] или [3, с. 89], при вычислении пределов в соотношениях (2) к условию $t - \tau \to +\infty$ добавляют еще дополнительное условие $\tau \to +\infty$. Доказательство того, что это дополнительное условие не изменяет (по меньшей мере для систем из класса \mathcal{M}_n) величин (2), приведено в доказательстве теоремы 1 работы [4].

Показатели (2) (точнее, первый из них) введены П. Г. Болем [5] и независимо из других соображений К. П. Персидским [6] (см. также [1, с. 172; 2, с. 109–111]). Для (нелинейной) системы отрицательность верхнего генерального показателя ее системы первого приближения, если последняя принадлежит классу \mathcal{M}_n , является [5] необходимым и достаточным условием устойчивости при постоянно действующих возмущениях, а также [6] необходимым и достаточным условием равномерной устойчивости по первому приближению. Отрицательность верхнего генерального показателя системы — достаточное условие ее равномерной устойчивости и необходимое и достаточное условие равномерной устойчивости всех систем из некоторой ее окрестности. Важная характеризация показателей (2) получена в работе [7]: верхний (нижний) генеральный показатель $\Omega^0(A)$ ($\omega_0(A)$) системы (1) есть точная верхняя (нижняя) грань верхних (нижних) показателей Боля ненулевых решений системы (1) при малых возмущениях ее коэффициентов. Эти и другие свойства величин (2) делают их одними из основных асимптотических характеристик линейных дифференциальных систем.

Наряду с показателями (2) рассмотрим введенные в работе [8] показатели

$$\Omega_0(A) = \lim_{t \to \tau \to +\infty} \frac{1}{t - \tau} \ln \|X_A(t, \tau)\| \quad \text{if} \quad \omega^0(A) = \overline{\lim}_{t \to \tau \to +\infty} \frac{1}{t - \tau} \ln \|X^{-1}(t, \tau)\|^{-1}. \tag{3}$$

Хотя для величин (3) к настоящему времени не известно каких-либо столь же важных свойств, как свойства, приведенные выше для величин (2), тем не менее, с формально-логической точки зрения, определение величин (2) не обладает никакими преимуществами перед