где
$$x^{[d]} = \operatorname{col}(x_1, \dots, x_d) = Q_1 v$$
, $x_{[r]} = \operatorname{col}(x_{d+1}, \dots, x_n) = Q_2 w$, $x = \operatorname{col}(x^{[d]}, x_{[r]})$, $\hat{C}^{(11)} = Q_1^{-1} \hat{A}_{d,d}^{(11)} Q_1$, $\hat{C}^{(21)} = Q_2^{-1} (\hat{A}_{r,d}^{(21)} + B_{r,n} \hat{U}_{n,d}) Q_1$, $\hat{C}^{(22)} = Q_2^{-1} (\hat{A}_{r,r}^{(22)} + B_{r,n} \hat{U}_{n,r}) Q_2$, $\hat{U} = \{\hat{U}_{n,d}, \hat{U}_{n,r}\}$.

Имеет место

Теорема. Если матрица $\hat{C}^{(11)}$ не имеет чисто мнимых собственных чисел $\pm i\lambda_j$ $\lambda_j \in L$ и для мощности целевого множества имеет место оценка

$$|L| > [(r - r_2)/2],$$

то задача управления асинхронным спектром для системы (1) не имеет решений.

Литература

- 1. Папалекси Н. Д. Об одном случае параметрически связанных систем // Journ. of Phys. Acad. Sc. USSR. 1939. Т. 1. С. 373–379.
- 2. Massera J. L. Observaciones sobre les soluciones periodicas de ecuaciones diferenciales // Bol. de la Facultad de Ingenieria. 1950. V. 4, Nº 1. P. 37–45.
- 3. Demenchuk A. K. Partially irregular almost periodic solutions of ordinary differential systems // Math. Bohemica. 2001. V. 126, N1. P. 221–228.
- 4. Minorsky N. On asynchronous actions // Journ. of the Franclin Institute. 1955. V. 259, \mathbb{N}_2 3. P. 209–219.
- 5. Пеннер Д. И., Дубошинский Д. Б., Козаков М. И. и др. A синхронное возбуждение незатухающих колебаний // Успехи физич. наук. 1973. Т. 109, вып. 1. С. 402–406.
- 6. Деменчук А. К. Задача управления спектром сильно нерегулярных периодических колебаний // Докл. НАН Беларуси. 2009. Т. 53, № 4. С. 37–42.

БЕСКОНЕЧНЫЕ ВАРИАНТЫ ЭФФЕКТА ПЕРРОНА СМЕНЫ ЗНАЧЕНИЙ ХАРАКТЕРИСТИЧЕСКИХ ПОКАЗАТЕЛЕЙ ДИФФЕРЕНЦИАЛЬНЫХ СИСТЕМ

H.A. Изобов¹, A.B. Ильин²

¹ Институт математики НАН Беларуси, Минск, Беларусь izobov@im.bas-net.by

 2 Московский государственный университет, Москва, Россия iline@cs.msu.su

Рассматриваем двумерные линейные дифференциальные системы

$$\dot{x} = A(t)x, \quad x \in \mathbb{R}^2, \quad t \geqslant t_0,$$
 (1)

с ограниченными бесконечно дифференцируемыми коэффициентами и отрицательными характеристическими показателями $\lambda_1(A) \leqslant \lambda_2(A) < 0$, являющиеся линейным приближением для нелинейных систем

$$\dot{y} = A(t)y + f(t,y), \quad y \in \mathbb{R}^2, \quad t \geqslant t_0,$$
 (2)

с бесконечно дифференцируемым по своим аргументам m-возмущением

$$f: ||f(t,y)|| \le C_f ||y||^m, \quad y \in \mathbb{R}^2, \quad t \ge t_0$$
 (3)

порядка m>1 малости в окрестности начала координат y=0 и возможного роста вне ее. По известному (частичному) эффекту Перрона [1; 2, с. 50–51] смены значений характеристических показателей существуют линейная система (1) с конкретными характеристическими показателями $\lambda_1<\lambda_2<0$ и нелинейная система (2) с возмущением (3) второго

порядка и всеми бесконечно продолжимыми решениями, часть которых совпадает с решениями исходной системы (1) и имеет показатель λ_2 , а оставшаяся часть — общий положительный показатель, точно вычисленный в [3, с. 13–15]. Различным обобщениям этого эффекта посвящен цикл совместных работ авторов и предшествующих им также совместных работ первого автора и С.К. Коровина.

Настоящее сообщение посвящено бесконечным вариантам приведенного эффекта Перрона. Простейший из них содержит следующая

Теорема 1 [4]. Для любых параметров m > 1 и $\lambda_1 \le \lambda_2 < 0$ и непустых произвольных конечных или ограниченных счетных множеств $\beta_i \subset [\lambda_i, +\infty), i = 1, 2, y$ довлетворяющих условию отделенности $\sup \beta_1 \le \inf \beta_2$, существуют:

- 1) система линейного приближения (1) с ограниченными бесконечно дифференцируемыми на полуоси $[1, +\infty)$ коэффициентами и характеристическими показателями $\lambda_1(A) = \lambda_1 \leqslant \lambda_2(A) = \lambda_2$,
- 2) бесконечно дифференцируемое по своим аргументам t, y_1, y_2 и удовлетворяющее условию (3) возмущение $f: [1, +\infty) \times \mathbb{R}^2 \to \mathbb{R}^2$ порядка m > 1, такие что все нетривиальные решения $y(t, c), \ y(1, c) = c$, нелинейной системы (2) бесконечно продолжимы вправо и их характеристические показатели составляют множества

$$\{\lambda[y(\cdot,c)]: c_2=0, \ c_1\neq 0\}=\beta_1,$$

$$\{\lambda[y(\cdot,c)]: c_2 \neq 0\} = \beta_2, \quad c = (c_1,c_2) \in \mathbb{R}^2.$$

Исследование по линейному приближению как экспоненциальных устойчивости и условной устойчивости, так и неустойчивости нулевого решения системы (2), как правило, сводится к определению знаков характеристических показателей ее решений, начинающихся в любой как угодно малой окрестности начала координат. Поэтому возникает необходимость реализации бесконечного эффекта Перрона смены значений характеристических показателей именно на таких решениях системы (2). Справедлива

Теорема 2 [5]. Для любых параметров m > 1, $\lambda_1 \le \lambda_2 < 0$ и произвольного счетного замкнутого сверху множества $\beta \subset [\lambda_1, +\infty)$ со свойствами $\lambda_2 \le b \equiv \sup \beta \in \beta$ существуют:

- 1) линейная система (1) с ограниченными бесконечно дифференцируемыми на полуоси $[1, +\infty)$ коэффициентами и характеристическими показателями $\lambda_i(A) = \lambda_i, i = 1, 2,$
- 2) бесконечно дифференцируемое по времени t и переменным y_1, y_2 m-возмущение $f(t, y_1, y_2),$

такие что все нетривиальные решения y(t,c) нелинейной системы (2) бесконечно продолжимы вправо и их показатели составляют предельное множество

$$\Lambda_0(A, f) \equiv \lim_{\rho \to +0} \{ \lambda[y(\cdot, c)] : 0 < ||c|| \leqslant \rho \} = \beta$$

и принимают значения

$$\lambda[y(\cdot,c)] = b, \quad \forall c \neq I \equiv \{x \in \mathbb{R}^2 : |x_1| < 1, \ x_2 = 0\}.$$

В связи с утверждением предыдущей теоремы возникает вопрос о существовании помимо начала координат других точек \mathbb{R}^2 , в любой окрестности которых реализуется бесконечный эффект Перрона. Счетность числа таких точек устанавливает

Теорема 3. Для любых параметров m > 1, $\lambda_1 \le \lambda_2 < 0$ и произвольного конечного или ограниченного счетного множества $\beta \subset [\lambda_1, +\infty)$, $\beta \cap [\lambda_2, +\infty) \neq \emptyset$, существуют такие линейная система (1) и нелинейная (2) с m-возмущением f, что все нетривиальные решения системы (2) с линейным приближением (1) бесконечно продолжимы вправо и

их характеристические показатели составляют множество $\Lambda(A, f) = \beta$, принимающее в точках $p = (p_1, p_2) \in \mathbb{R}^2$ с целочисленными координатами свои предельные значения

$$\Lambda_p(A,f) = \begin{cases} \beta, & ecnu \ p_1 \in Z \ u \ p_2 = 0, \\ \beta \cap [\lambda_2, +\infty), & ecnu \ p_1 \in Z \ u \ p_2 \in Z \setminus \{0\}. \end{cases}$$

Приведенные результаты получены при финансовой поддержке Белорусского республиканского (проект Φ 14P–011) и Российского (проект 14–01–90010 Бел-а) фондов фундаментальных исследований.

Литература

- 1. Perron O. Die Stabilitätsfrage bei Differentialgleichungen // Math. Zeitsch. 1930. Bd 32. Hf 5. S. 702–728.
- 2. Леонов Г. А. *Хаотическая динамика и классическая теория устойчивости движения*. М.; Ижевск, 2006.
 - 3. Izobov N. A. Lyapunov Exponents and Stability. Cambridge, 2012.
- 4. Ильин А. В., Изобов Н. А. Весконечномерный эффект Перрона смены всех значений характеристических показателей дифференциальных систем // Докл. РАН. 2014. Т. 457. № 2. С. 147–151.
- 5. Ильин А.В., Изобов Н.А.Счетный аналог эффекта Перрона смены значений характеристических показателей в любой окрестности начала координат // Дифференц. уравнения. 2015. Т. 51. № 8. С. 1115–1117.

ПРЕДЕЛЬНЫЕ МНОЖЕСТВА НЕПРИВОДИМОСТИ ЛИНЕЙНЫХ ДИФФЕРЕНЦИАЛЬНЫХ СИСТЕМ КАК ФУНКЦИИ ПАРАМЕТРА

H.A. Изобов 1 , С.A. Мазаник 2

 1 Институт математики НАН Беларуси, Минск, Беларусь izobov@im.bas-net.by

Рассматриваем исходные линейные дифференциальные системы

$$\dot{x} = A(t)x, \quad x \in \mathbb{R}^n, \quad ||A(t)|| \leqslant a < +\infty, \quad t \geqslant 0,$$
 (1_A)

с кусочно-непрерывными ограниченными коэффициентами. Наряду с системами (1_A) рассмотрим и возмущенные системы (1_{A+Q}) также с кусочно-непрерывными на полуоси $[0,+\infty)$ возмущениями Q, удовлетворяющими либо условию

$$||Q(t)|| \leqslant C_O e^{-\sigma t}, \quad \sigma > 0, \quad t \geqslant 0, \tag{2}$$

либо более общему условию

$$\lambda[Q] \equiv \overline{\lim}_{t \to +\infty} t^{-1} \ln \|Q(t)\| \leqslant -\sigma < 0.$$
 (3)

Эти возмущения для $\sigma = 0$ как в случае (2), так и в случае (3) дополнительно считаем исчезающими на бесконечности:

$$Q(t) \to 0$$
 при $t \to +\infty$. (4)

В нашей работе [1] введены непустые так называемые множества неприводимости $N_2(a,\sigma)$ и $N_3(a,\sigma)$, $\sigma \in (0,2a]$, всех тех систем (1_A) с матрицами коэффициентов A, имеющими на

 $^{^2}$ Белгосуниверситет, факультет прикладной математики и информатики, Минск, Беларусь smazanik@bsu.by