О БИОЛОГИЧЕСКОЙ АКТИВНОСТИ БЕЛЫХ СВЕТОДИОДОВ

В. К. Кононенко, В. С. Пунтус

Белорусский государственный университет, Минск E-mail: vklavik@gmail.com

Введение. В настоящее время активно используются белые светодиоды, в основе которых лежат гетероструктуры с длиной волны излучения 430–480 нм и преобразующий это свечение желтый люминофор [1, 2]. Излучение белого светодиода оказывает на человека специфическое воздействие, влияет на секрецию мелатонина и кортизола, вызывает циркадные изменения [3].

Исследования [4, 5] позволили определить специальную функцию спектральной чувствительности фоторецепторов глаза (дополнительно к палочкам и колбочкам) с актиничным спектром ($\lambda \approx 460$ нм). Актиничное излучение оказывает то или иное фотохимическое или биохимическое воздействие на глаз человека. Новый тип светочувствительных клеток сетчатки ответственен за регуляцию циркадной (суточной) ритмики жизнедеятельности организма человека («сон-бодрствование»). Циркадные ритмы, протекающие в 24-часовой период, синхронизуются с естественной световой динамикой окружающей среды («день-ночь»).

В настоящей работе рассмотрены спектральные характеристики голубых и белых светодиодов, сделаны оценки светоотдачи используемых люминофоров. Анализ спектров излучения выполнен в рамках модели без правила отбора для нитридных соединений в системе GaN-AlGaN и GaInN-GaN. Оценки коэффициента биологического действия излучения выполнены при уровне нормировки спектров светодиодов 100 лм и установлено изменение циркадной эффективности излучателей в зависимости от интенсивности гетероструктур и люминофоров.

Спектральные характеристики светодиодов. Коэффициент биологического действия излучателя определяется спектральной циркадной эффективностью $B(\lambda)$ излучения и спектральной чувствительностью глаза для дневного зрения — кривой видности $V(\lambda)$. Величина $B(\lambda)$ учитывает долю излучения, обеспечивающего визуальные (зрительные) функции и оказывающего биологическое действие [6, 7].

Функция видности $V(\lambda)$, учитывающая чувствительность человеческого глаза, имеет стандартный вид:

$$V_1(\lambda) = \exp\left(-\left(\frac{\lambda - \lambda_0}{\sigma_1}\right)^2\right), \qquad V_2(\lambda) = \exp\left(-\left(\frac{\lambda - \lambda_0}{\sigma_2}\right)^2\right),$$
 (1)

где $\lambda_0 = 555$ нм, $\sigma_1 = 54.3$ нм, $\sigma_2 = 66.3$ нм. Суммарный спектр видности $V(\lambda)$ равен $V(\lambda) = V_1(\lambda) + V_2(\lambda)$. Максимум видности составляет 683 лм/Вт.

Функция $B(\lambda)$ учитывает результаты биологического воздействия синего света, приводящего к подавлению секреции мелатонина. Здесь используется представление [8] с учетом функций спектральной чувствительности рецепторов сетчатки. Функция $B(\lambda)$ имеет вид

$$B_1(\lambda) = \exp\left(-\left(\frac{\lambda - \lambda_{10}}{\sigma_{1b}}\right)^2\right), \qquad B_2(\lambda) = 0.34 \exp\left(-\left(\frac{\lambda - \lambda_{20}}{\sigma_{2b}}\right)^2\right), \tag{2}$$

где $\lambda_{10} = 445$ нм, $\sigma_{1b} = 44$ нм, $\lambda_{20} = 513$ нм, $\sigma_{2b} = 33$ нм. Суммарный спектр функции $B(\lambda)$ равен $B(\lambda) = B_1(\lambda) + B_2(\lambda)$.

Для оценки влияния излучения светодиодов на секрецию мелатонина нормируем спектральное распределение интенсивности излучения светодиодов и рассчитаем соответствующий биологический эквивалент. Нормировка спектра излучения определяется из интеграла перекрытия спектральной интенсивности излучения светодиодов $S(\lambda)$ и кривой видности $V(\lambda)$: $S_0 = 683 \int S(\lambda)V(\lambda)d\lambda$. Нормировочное значение S_0 берется обычно 100 лм (за эталон принимается лампа накаливания с цветовой температурой $T_{\rm II} = 2800$ K).

Биологический эквивалент излучения светодиода рассчитывается из интеграла перекрытия нормировочного спектра $S(\lambda)$ и функции $B(\lambda)$: $b_{\rm eq} = \int B(\lambda)S(\lambda)d\lambda$. Спектральный максимум функции $B(\lambda)$ соответствует длине волны $\lambda \approx 464$ нм, значение функции нормировано на единицу. Высокие значения функции $B(\lambda)$ лежат в сине-голубой области спектра светодиодов, что перекрывается с излучением гетероструктур светодиодов. Для эталона (100 %) величина $b_{\rm eq}$ составляет $b_0 = 0.0324$ [7].

Иногда для оценки биологической активности излучения источников вводится относительный коэффициент циркадной эффективности, методика определения которого предложена в ТУ Ильменау [9] и основана на данных фотометрических измерений [10, 11]. В этом случае, очевидно, оценки применения источников по актиничному фактору зависят от нормировки спектрального состава излучения.

Биологическая эффективность излучения светодиодов. При нормировке на 100 лм учтем два участка спектра: излучение гетероструктуры $\alpha S(\lambda)$ и полосу свечения люминофора $\beta s(\lambda)$. Тогда имеем

$$S_0 = \alpha 683 \int S(\lambda)V(\lambda)d\lambda + \beta 683 \int S(\lambda)V(\lambda)d\lambda. \tag{3}$$

Здесь $S(\lambda)$ и $s(\lambda)$ — единичные (нормированные, относительные) интенсивности спектров. Коэффициенты α и β учитывают соотношение ин-

тенсивностей гетероструктуры и свечения люминофора и характеризуют возбуждение светодиода. Структура и конфигурация светодиодов определяют их эффективность и работоспособность [12]. Спектры гетероструктур и люминофоров зависят от состава квантовых ям [13, 14] и согласования спектров возбуждения [1, 2].

Обозначим $\int S(\lambda)d\lambda = A_1$, $\int s(\lambda)d\lambda = A_2$ и $683\int S(\lambda)V(\lambda)d\lambda = D_1$, $683\int s(\lambda)V(\lambda)d\lambda = D_2$. Пределы интегрирования охватывают спектральные интервалы перекрытия спектров гетероструктур $S(\lambda)$, люминофоров $s(\lambda)$ и видности $V(\lambda)$ соответственно. Таким образом, имеем соотношение $S_0 = \alpha D_1 + \beta D_2$ и эффективность светодиода η (лм/Вт) равна

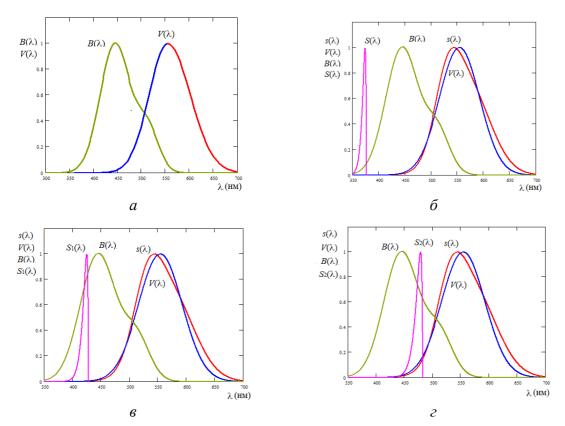
$$\eta = (\alpha D_1 + \beta D_2) / (\alpha A_1 + \beta A_2). \tag{4}$$

Для расчета биологического эквивалента зададим $\int B(\lambda)S(\lambda)d\lambda = F_1$, $\int B(\lambda)s(\lambda)d\lambda = F_2$. Тогда (относительно b_0)

$$b_{\rm eq} = \left(\alpha \int B(\lambda)S(\lambda)d\lambda + \beta \int B(\lambda)s(\lambda)d\lambda\right)/b_0 = \left(\alpha F_1 + \beta F_2\right)/b_0. \tag{5}$$

Если излучение гетероструктуры на фоне люминофора не существенно, то $\underline{\alpha} \approx \underline{0}$ и формулы упрощаются для эффективности и биологического эквивалента: $\eta = D_2/A_2$, $b_{\rm eq} = \beta F_2/b_0$. При этом из нормировки $S_0 = 100$ лм следует, что $\beta = 100/D_2$. Иначе

$$\eta = \frac{683 \int s(\lambda)V(\lambda)d\lambda}{\int s(\lambda)d\lambda}, \quad b_{eq} = \eta \left(\frac{100}{683}\right)^2 \frac{\left(\int B(\lambda)s(\lambda)d\lambda\right)\left(\int s(\lambda)d\lambda\right)}{b_0\left(\int s(\lambda)V(\lambda)d\lambda\right)^2}.$$
 (6)


Наоборот, если свечение люминофора мало и наиболее заметно излучение гетероструктуры, то $\underline{\beta} \approx 0$ и формулы для эффективности и биологического эквивалента принимают вид: $\eta = D_1/A_1$, $b_{\rm eq} = \alpha F_1/b_0$. Из нормировки $S_0 = 100$ лм имеем $\alpha = 100/D_1$. Наиболее опасное голубое излучение гетероструктуры можно отсечь с помощью фильтров.

Далее, введем коэффициент, учитывающий соотношение интенсивностей люминофора и гетероструктуры: $\gamma(\alpha,\beta) = 100/D_2(\beta + \alpha D_1/D_2)$. Отсюда находим $\eta = 100/\gamma(\alpha,\beta) \left(\beta A_2 + \alpha A_1\right)$ и биологический эквивалент $b_{\rm eq} = \left(\alpha F_1 + \beta F_2\right)/b_0$.

В частном случае $\underline{\alpha}=\underline{\beta}$ имеем $\gamma(\alpha,\alpha)=100/\alpha(D_2+D_1)$, или $\alpha=100/(D_1+D_2)$. Тогда находим $\eta=(D_2+D_1)/\big(A_2+A_1\big)$, а биологический эквивалент равен $b_{\rm eq}=100(F_1+F_2)/b_0(D_1+D_2)=100\eta(F_1+F_2)(A_1+A_2)/b_0(D_1+D_2)^2$.

Оценки светоотдачи η светодиодов и их биологической активности $b_{\rm eq}$ приведены на рис. 1 и в табл. 1 и 2. Предельные значения эффективности наиболее часто используемых люминофоров белых светодиодов

указаны в табл. 1. Изменение биологической активности $b_{\rm eq}$ белых светодиодов с учетом интенсивности гетероструктур разного состава при наличии желтого люминофора YAG: ${\rm Ce}^{3+}$ приведено в табл. 2. Как видно, биологическая активность белых светодиодов задается интенсивностью и спектральным диапазоном гетероструктуры. Это определяет циркадный эффект применения источника — его мелатониновый фактор.

 $Puc.\ 1.$ Функции $V(\lambda)$ и $B(\lambda)$ (a), спектры излучения гетероструктур $S(\lambda)$ и желтого люминофора $s(\lambda)$ ($\delta, \epsilon, \epsilon$)

. Таблица $\it I$. Спектральные характеристики белых светодиодов с люминофорами, $\it T=300~{\rm K}$

Люминофор,	Полоса	Спектр	Предельная	Биологическая
цвет	испускания,	возбуждения,	эффективность,	активность,
	λ (нм)	λ_{\max} (HM)	η (лм/Вт)	$b_{ m eq}$ (%)
YAG: Ce ³⁺ , yellow	500-620	342; 460	486	102*
β-sialon: Eu ²⁺ , green (3)	535	303; 405; 450	532	144**
CaAlSiN ₃ : Ce ³⁺ , yellow (1)	570	259; 313; 370; 421; 483	382	42*
Ca-α-sialon: Eu ²⁺ , yellow-orange (2)	580	300; 392; 444; 487	469	51*
Sr ₂ Si ₅ N ₈ : Eu ²⁺ , red (4)	640	450	211	13*

Гетероструктура,	λ	hν	Световая отдача	Биологическая
спектр излучения	(нм)	(aE)	структуры,	активность,
			η (лм/Вт)	$b_{ m eq}\left(\% ight)$
GaN-Al _{0.2} Ga _{0.8} N,	376	3.30	7.5×10 ⁻³	$2.4 \times 10^6 ***$
ультрафиолетовый				(105*)
$Ga_{0.9}In_{0.1}N$ - GaN ,	428	2.90	1.6	$1.4 \times 10^{5} ***$
фиолетовый				(152**)
$Ga_{0.8}In_{0.2}N$ - GaN ,	483	2.57	71	$3.3 \times 10^3 ***$
голубой				(165**)

Заключение. Проведенные оценки биологической активности светодиодов относятся к потенциальной угрозе с точки зрения мелатонинового фактора. Из-за слабого перекрытия кривой функции $B(\lambda)$ со спектром излучения люминофоров биологическая активность светодиодов получается обычно низкой (оценка применения - * безопасно). Однако из-за излучения ультрафиолетовой и фиолетовой гетероструктур биологическая активность светодиодов при нормировке 100 лм получается достаточно высокой (оценки применения: ** нежелательно и *** опасно).

- 1. *Xie R.-J.*, *Li Y.Q.*, *Hirosaki N.*, *Yamamoto H.* Nitride Phosphors and Solid-State Lighting. N.Y., 2011. 329 p.
- 2. Led Lighting: Technology and Perception / Eds. Khanh T. Q., Bodrogi P., Vinh Q. T., Winkler H. Weinheim, 2014. 493 p.
- 3. Закгейм А. Л. // Светотехника. 2012. № 6. С. 12–21.
- 4. Brainard G. C., Hanifin J. P., Greeson J. M. et al. // J. Neurosci. 2001. Vol. 21, No. 16. P. 6405-6412.
- 5. Thapan K., Arendt J., Skene J. D. // J. Physiol. 2001. Vol. 535, No. 1. P. 261-267.
- 6. Аладов А. В., Закгейм А. Л., Мизеров М. Н., Черняков А. Е. // Светотехника. 2012. № 3. С. 7–10.
- 7. Бижак Г., Кобав М. Б. // Светотехника. 2012. № 3. С. 11-16.
- 8. Леонидов А. В. // Светотехника. 2011. № 3. С. 69-70.
- 9. Gall D, Bieske K. // CIE Sympos.'04 "Light and Health". Vienna, 2004. P. 129-132.
- 10. Lang D. // Proc. SPIE. 2012. Vol. 8278. P. 827803-1-827803-10.
- 11. *Žukauskas A., Vaicekauskas R., Vitta P. //* Appl. Opt. 2012. Vol. 51, No. 35. P. 8423-8432.
- 12. Zakgeim A. L., Chernyakov A. E., Vaskou A. S. et al. // Proc. 14th Int. Conf. on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems, EuroSimE 2013. Wroclaw, 2013. P. 1/7–7/7.
- 13. *Kononenko V. K.* // Сб. докл. Междунар. науч. конф. ФТТ-2007. Т. 2. Минск, 2007. С. 42–46.
- 14. *Kononenko V. K. //* XII Междунар. симпоз. "Нанофизика и наноэлектроника". Т. 2. Н. Новгород, 2008. С. 485–486.