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Theoretical justification for the occurrence of squeezed and entangled color states in QCD
is given. Reducing the value of the scaling exponent in the transition from coherent to
squeezed states is showed by investigation of the influence of squeezing effect on intermittency
and scaling of the final hadron states taking into account the phase transition from color
particles to hadrons.
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1. Introduction

Many experiments at e+e−, pp̄, ep colliders

were devoted to hadronic physics, since detailed

studies of such processes are important for better

understanding and testing both perturbative

and non-perturbative QCD and also for

finding manifestations of new physics. The

discrepancies between theoretical calculations

and experimental data, for example for the width

of multiplicity distribution (MD), suggest that

the non-perturbative evolution of the quark-

gluon cascade plays an important role. New

gluon states, evaluated at the non-perturbative

stage, contribute to various features of hadronic

physics. In particular, such a contribution to

MD can be in the form of the sub-Poissonian

distribution [1, 2].

It is known that such a property is

inherent for squeezed states (SS), which are well

studied in quantum optics (QO) [3–6]. Photon

squeezed states can have both sub-Poissonian

and super-Poissonian statistics corresponding to

antibunching and bunching of photons.

Therefore we believe that the non-
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perturbative stage of gluon evolution can be

one of sources of the gluon SS in QCD by analogy

with nonlinear medium for photon SS in QO.

2. Squeezed and entangled gluon

states

By analogy with QO [6] the squeezing

condition for gluons with different colors h, g is

written as
〈
N̂

(
(∆̂X

h,g

λ ) 1

2

)2〉
< 0 (1)

where N̂ is a normal ordering operator, ∆̂X
h,g

λ =

X̂h,g
λ −

〈
X̂h,g

λ

〉
, the phase-sensitive Hermitian

operators (X̂h,g
λ )1 =

[
b̂hλ + b̂gλ+ b̂h+λ + b̂g+λ

]
/(2

√
2)

and (X̂h,g
λ )2 =

[
b̂hλ + b̂gλ − b̂h+λ − b̂g+λ

]
/(2i

√
2) are

linear combination of the annihilating (creating)

operators b̂hλ (b̂h+λ ), h, g = 1, 8 are gluon color

charges, λ is a polarization index. Averaging in

(1) is performed over the final state vector

|f〉 ≃ |in〉 − i t
(
Ĥ

(3)
I

(0) + Ĥ
(4)
I

(0)
)
|in〉 (2)

which describes the gluon system later at small

time t. Operators Ĥ
(3)
I

and Ĥ
(3)
I

describing

the three- and four-gluon selfinteractions include

combinations of three and four annihilating and
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creating operators [7]. Initial state vector |in〉
describes the gluon system at the end of the

perturbative stage [8] and may be regarded as a

product of the coherent states of the gluons with

different colors and polarization indexes |in〉 ≡
|α〉 =

3∏
λ=1

8∏
b=1

|αb
λ〉.

Thus, the two-mode squeezing condition is

N̂
(
(∆̂X

h,g

λ ) 1

2

)2〉
=± i t

8

{〈
α
∣∣[[ĤI(0), b

h+
λ

]
, bh+λ

]∣∣α
〉
−
〈
α
∣∣[bhλ,

[
bhλ, ĤI(0)

]]∣∣α
〉

+
〈
α
∣∣[[ĤI(0), b

g+
λ

]
, bg+λ

]∣∣α
〉
−
〈
α
∣∣[bhλ,

[
bhλ, ĤI(0)

]]∣∣α
〉
+ 2

〈
α
∣∣[[ĤI(0), b

h+
λ

]
, bg+λ

]∣∣α
〉

−2
〈
α
∣∣[bgλ,

[
bhλ, ĤI(0)

]]∣∣α
〉}

< 0 (3)

where ĤI(0) = Ĥ
(3)
I

(0) + Ĥ
(4)
I

(0).

It can be shown that only the four-gluon self-

interaction can yield a two-mode squeezing effect

since

[[
Ĥ

(3)
I (0), b̂h+λ

]
, b̂h+λ

]
= 0,

[[
Ĥ

(3)
I (0), b̂g+λ

]
, b̂g+λ

]
= 0,

[[
Ĥ

(3)
I (0), b̂h+λ

]
, b̂g+λ

]
= 0,

[
b̂gλ,

[
b̂hλ, Ĥ

(3)
I (0)

]]
= 0,

[
b̂hλ,

[
b̂hλ, Ĥ

(3)
I (0)

]]
= 0,

[
b̂gλ,

[
b̂gλ, Ĥ

(3)
I (0)

]]
= 0. (4)

In particular for the collinear gluons we have the condition

〈
N̂

(
(∆̂X

h,g

λ ) 1

2

)2〉
= ± t

αsπ

4k0
(fahbfahc + fagbfagc + fahbfagc + fagbfahc)

×
∑

λ1 6=λ

|αb
λ1
||αc

λ1
| sin(γbλ1

+ γcλ1
) < 0. (5)

Here |αb
λ1
| and γbλ1

are an amplitude and a phase

of the initial gluon coherent field, αs = g2/(4π) is

a coupling constant, fahb is a structure constant of

the color group SUc(3). The two-mode squeezing

condition (5) is fulfilled for any cases apart from

if all initial gluon coherent fields are real or

imaginary. Obviously, the larger are both the

amplitudes of the initial gluon coherent fields

with different colour and polarization indexes and

coupling constant, the larger is the two-mode

squeezing effect.

Thus, non-perturbative four-gluon self-

interaction is the source of the squeezing effect.

One of the entangled condition is

0 < y < 1 (6)

where entangled measure is defined by the

analogy with QO as

y ≃ 2
√
2

∣∣∣∣
〈
N̂

(
(∆̂X

h,g

λ ) 1

2

)2〉∣∣∣∣ . (7)

Entangled condition for collinear gluons can be
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written as

0 <

∣∣∣∣ t
αsπ√
2k0

(fahbfahc + fagbfagc + fahbfagc

+ fagbfahc)
∑

λ1 6=λ

|αb
λ1
||αc

λ1
| sin(γbλ1

+ γcλ1
)

∣∣∣∣ < 1.

(8)

Obviously the squeezed gluon states are

simultaneously entangled if the amplitudes

of the initial gluon coherent fields are small

enough.

3. Intermittency and scaling

If the transition from quark-gluon system to

hadrons are considered as the phase transition,

the factorial moments are defined as

Fq = JqJ
−q
1 Jq−1

0 (9)

where

Jq = (q!)2
q∑

n=0

1

n!((q − n)!)2

(
2|ν|
µ

)n
∞∫

0

dt exp

{
|a|t− |a|2

2x
t2
} ∣∣∣Hq−n

(√
|t− |ν|2| (µA1 − |ν|A∗

1)
)∣∣∣

2
,(10)

Hq−n is Hermite polynomial, µ = ch(r), ν =

sh(r)eiϑ, r is a squeezing parameter, ϑ defines

squeezing direction, a is a phase transition

parameter, x is function of the phase transition

parameter and bin width, A1 in the case of the

coherent squeezed states (CSS) [5] reads

A1 =
1√
2µν

[µeiφ + νe−iφ] (11)

and in the case of the squeezed coherent states

(SCS) [5]

A1 =
eiφ√
2µν

[
µ2 + |ν|2 − µ(ν∗e2iφ + νe−2iφ)

]−1/2
.

(12)

We have the intermittency [9, 10] if

lnFq ∝ ϕq(− lnx) (13)

and scaling of Ochs-Wosiek [11] if

lnFq ∝ βq lnF2, (14)

where ϕq is an intermittency index and βq is fitted

by the function (q − 1)ν , ν is a scaling exponent.

If for coherent hadron states we have

ν = 1.369 ± 0.002, then for squeezed hadron

states we obtain

1. CSS, SCS: ν = 1.3621± 0.0013

at r = 0.6 and (φ− ϑ/2) = π/2.

2. SCS: ν = 1.3642± 0.0013

at r = 0.6 and (φ− ϑ/2) = π/3.

3. CSS: ν = 1.3439± 0.0003

at r = 2.0 and (φ− ϑ/2) = π/3.

4. SCS: ν = 1.3155± 0.0007

at r = 2.0 and (φ− ϑ/2) = π/3.

Thus we observe reducing the value of the

scaling exponent in the transition from a coherent

to squeezed hadron states.
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