
Nonlinear Phenomena in Complex Systems, vol. 17, no. 4 (2014), pp. 405 - 408

Quantum Oscillator Problem on SO(2, 2) Hyperboloid
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In this note the harmonic oscillator system on the hyperboloid H2
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has been considered.
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1. Introduction

Quantum mechanics on spaces with constant

curvature (negative and positive) has always

drawn considerable attention for its many

peculiarities and tangible difficulties, including

the nontrivial quantization of particle dynamics,

that distinguishes these spaces from the Euclidean

space. On the other hand the negative curvature

spaces are the model of relativistic space time

with a constant curvature (de Sitter and anti de -

Sitter spaces), which is a crucial point for its wide

applications in relativistic field theories [1] and

quantum gravity [2]. Among other applications

we can mention also the quantum dots [3] and

the quantum Hall effect [4].

In this short note we discuss the harmonic

oscillator problem on the configuration space

based on the surface of three-dimensional

hyperboloid H2
2 : z20 + z21 − z22 − z23 = R2, R > 0.

The main aim of our investigations is to describe

features which curvature of space on the dynamics

of these systems introduces. In our recent work

we have already considered the Kepler-Coulomb

problem on the H2
2 [6] and have obtain that, as

in Euclidean space, the energy spectrum splits to
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scattering and bound states, but the number of

bound states is finite (really very large ∼
√
R)

and degenerate on angular quantum number and

infinitely degenerate on azimuthal one.

We recall that the first investigations of

Hydrogen atom in quantum mechanics probably

were given in the famous works of Schrödinger [7],

who in the framework of the factorization method

studied this system on the three-dimensional

sphere and then by Stevenson [8] and by

Infeld and Shild [9], who solved the Schrödinger

equation for the same problem on the sphere

and two-sheeted hyperboloid. More recently

various aspects of Kepler-Coulomb problem and

harmonic oscillator, including its superintegrable

generalization, on the curved spaces have been

considered in the papers [10, 11].

2. Oscillator eigenfunctions and

eigenvalues

Our interest lies in investigation of the

Schrödinger equation on H2
2 : z20+z21−z22−z23 = R2

hyperboloid (~ = m = 1)

−1

2
∆LBΨ+ U(z)Ψ = EΨ (1)

for the potential of the harmonic oscillator -

U(z), introduced recently in the article [6]. In

the pseudo spherical coordinates (r > 0, τ ∈
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(−∞,∞), ϕ ∈ [0, 2π)) :

z0 = R cosh r, z1 = R sinh r sinh τ,

z2 = R sinh r cosh τ cosϕ, z3 = R sinh r cosh τ sinϕ

(2)

this potential has the form

U(z) =
ω2R2

2

(

z22 + z22 − z21
z2
0

)

=
ω2R2

2
tanh2 r

(3)

where ω is a constant. The Laplace–Beltrami

operator ∆LB up to the R2 factor is connected

with the Casimir operator for the group

SO(2,2) (which is an isometry group of the H2
2

hyperboloid) has the form

C2 = R2∆LB =
1

√

|g|
∂

∂ηi

√

|g| gik ∂

∂ηk

= N
2 + L

2,

g = det (gik), gijgjk = δik

(4)

where N
2 = −N2

1 + N2
2 + N2

3 and L
2 = −L2

1 +

L2
2 + L2

3. The six generators Li, Ni (i = 1, 2, 3)

of the SO(2,2) group are given with the following

formulas

L1 = z2∂3 − z3∂2, −N1 = z0∂1 − z1∂0,

L2 = z1∂3 + z3∂1, N2 = z0∂2 + z2∂0,

−L3 = z1∂2 + z2∂1, N3 = z0∂3 + z3∂0.

Choosing now the wave function Ψ in the

Schrödinger equation (1) as

Ψ(r, τ, ϕ) = (sinh r)−1R(r)Ym
ℓ (τ, ϕ) (5)

where the pseudospherical functions on the two-

dimensional one-sheeted hyperboloid Ym
ℓ are the

common eigenfunctions of the pair of operators

L
2Ym

ℓ = ℓ(ℓ + 1)Ym
ℓ and L2

1Ym
ℓ = m2Ym

ℓ .

The spectrum of ℓ, according to the irreducible

representations of the SO(2, 1) group, splits into

the following classes[
a]: ℓ is integer and m =

ℓ+ 1, ℓ+ 2, . . . for the positive discrete series;

[a] We not consider here the continuous supplementary
series when −1/2 < ℓ < 0 and m = 0,±1,±2, . . ..

ℓ is integer and m = −(ℓ + 1),−(ℓ + 2), . . . for

negative discrete series;

and ℓ = −1/2+ iρ and m = 0,±1,±2, . . . for the

continuous principal series.

1. First, let us consider the case when ℓ is

integer: ℓ = 0, 1, 2.... Then the pseudospherical

functions Ym
ℓ , normalized with respect to the

invariant measure on the one-sheeted hyperboloid

cosh τdτdϕ, have the form

Ym
ℓ (τ, ϕ) =

2ℓℓ!

π

√

(2ℓ+ 1) (|m| − ℓ− 1)!

2(|m|+ ℓ)!

× (cosh τ)−ℓ−1 Cℓ+1

|m|−ℓ−1
(tanh τ) eimϕ

(6)

Putting in Eq. (1) the wave function in the

form of (5), we arrive at the differential equation

in modified Poeschl–Teller form

d2R

dr2
+

[

E +
ν2 − 1/4

cosh2 r
− (ℓ+ 1/2)2 − 1/4

sinh2 r

]

R = 0

(7)

where E = 2R2E−ω2R4−1 and ν =
√

ω2R4 + 1

4
.

The spectrum of the equation (7) contains a

finite number of bound states at ν > ℓ + 3/2

and is described with the following wave function

normalized on [0,∞) [12]:

Rnrℓ (r) = Nnrℓ (sinh r)
ℓ/2(cosh r)1/2−ν

×2F1

(

−nr, nr + ℓ+ 3/2− ν; ℓ+ 3/2;− sinh2 τ
)

,

Nnrℓ =
1

Γ(ℓ+ 3/2)

×
√

2(ν − ℓ− 2n− 3/2) Γ(ℓ+ nr + 3/2) Γ(ν − nr)

nr! Γ(ν − nr − ℓ− 1/2)

(8)

where nr = 0, 1, . . . ; [1
2
(ν − ℓ − 3/2)] is a

radial quantum number and 2F1(a, b; c; z) is the

Gauss hypergeometric function. These also may

be expressed in terms of the Jacobi polynomials

of order nr and argument cosh 2r. The normalized
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total wave function Ψ(r, τ, ϕ) ≡ Ψnrℓm(r, τ, ϕ; ν)

is given by the formulas (5), (6) and (8). The

quantized energy is

EN (ν,R) = −(N + 1)(N + 3)

2R2

+
ν + 1/2

R2

(

N +
3

2

)

.
(9)

Here N = ℓ + 2nr is the principal quantum

number and the bound states occur for N =

0, 1, ..., Nmax = [ν − 3/2] ([x] is an integer part of

x). Therefore, there is a finite number of positive

discrete energy state of oscillator problem on

SO(2,2) hyperboloid, the energy of the ground

state is equal to E0 = 3(ν−1/2)/2R2 and the last

higher excited state is situated around ENmax
∼

(ν2 + 3/4)/2R2. For a fixed quantum number N

all level are degenerated for the quantum number

ℓ and nr, for N even and odd correspondingly

(N + 2)/2 and (N + 1)/2 times. Apart from this,

all states at a fixed value of ℓ are infinite times

degenerated for the azimuthal quantum number

m: m = ±(ℓ+ 1), ±(ℓ+ 2), . . ..

The continuous states are described by the

wave functions [12]

Rpℓ (r) = Npℓ (sinh r)
ℓ/2 (cosh r)1/2−ν

2F1

(

ℓ+ 3/2− ν + ip

2
,
ℓ+ 3/2− ν − ip

2
; ℓ+

3

2
;− sinh2 τ

)

, (10)

Npℓ =
1

Γ(ℓ+ 3/2)

√

p sinhπp

2π2

∣

∣

∣

∣

Γ

{

ℓ+ 3/2 + ν + ip

2

}

Γ

{

ℓ+ 3/2− ν + ip

2

}∣

∣

∣

∣

(11)

where the energy of the states of continuous

spectrum are E = (ν2 + 3/4 + p2/4)/2R2, p ∈R

with the minimum state: Emin = (ν2+3/4)/2R2.

The normalized total wave functions Ψ(r, τ, ϕ) ≡
Ψpℓm(r, τ, ϕ; ν) are given by the formulas (5) and

(10). Thus, we obtain, that for the integer value

of the quantum number ℓ the energy spectrum

is positive and splits into two part, discrete part

3(ν − 1/2)/2R2 < E < (ν2 + 3/4)/2R2 and

continuous one for (ν2 + 3/4)/2R2 ≤ E.

2. For the case when ℓ = −1/2 + iρ, the

potential in the equation (7) takes the form

of the attractive potential V (r) = −(ν2 −
1/4) cosh2 r − (ρ2 + 1/4) sinh2 r which is a

singular as ∼ r−2 at r ∼ 0 and thus the

corresponding eigenvalue problem is singular at

the beginning of the interval r ∈ (0,∞). Each

of linearly independent solutions of (7) is a

square integrable, so the spectrum is discrete for

each self-adjoint extension. However, the direct

calculation of orthonormal bases of eigenfunctions

is a complicated task and we omit it here.

3. Conclusion

In this note we have discussed the harmonic

oscillator on the surface of the hyperboloid H2
2 :

z20 + z21 − z22 − z23 = R2. We have found the

exact solution of the Schrödinger equation in

pseudo-spherical coordinates (2) and have shown

that the spectrum of the harmonic oscillator

on H2
2 , as in case of two-sheeted hyperboloid,

contains the scattering states and a finite number

of bound states. Each of the energy levels is

degenerated by radial and angular quantum

number and infinitely degenerated by azimuthal

quantum number m. The finite degeneration of

energy levels is connected with the existence of
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an additional (to the angular momentum operator

L
2) integral of motion, specific for the harmonic

oscillator operator, the so-called Demkov tensor:

Dik = (NiNk +NkNi)/2R
2 − ω2R2zizk/z

2
0 .

As it was shown in the work of Kalnins

and Miller [13] there exist 71 orthogonal

systems of coordinates, which admit the

separation of variables in the Helmholtz

equation (free Schrödinger equation) on SO(2,2)

hyperboloid. Therefore it is interesting to

consider a more general problem connected

to the construction of normalized solutions of

harmonic oscillator potential in all separation on

SO(2,2) hyperboloid. We plan to consider this

question in the near future.
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