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On Precanonical Quantization of Gravity
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Precanonical quantization is based on mathematical structures of the De Donder–Weyl
Hamiltonization of field theories. The resulting formulation of quantum gravity describes the
quantum geometry of space-time in terms of operator-valued distances and the transition
amplitudes between the values of spin connection at different points of space-time, which
obey the covariant precanonical analogue of the Schrödinger equation. In the context of
quantum cosmology the theory predicts a probability distribution of a cosmological spin-
connection field, which may have an observable impact on the large scale structures in the
universe.
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1. Introduction

Attempts to construct quantum theory of
gravity using the methods of QFT originating
from the canonical quantization in Minskowski
space-time are known to lead to certain technical
and conceptual difficulties. One of them is
the so-called “problem of time"which can be
traced back to the distinguished role of time
in the canonical Hamiltonian formalism. The
approach of precanonical quantization is based
on a different Hamiltonization in field theory,
which does not distinguish between the space
and time variables. The space-time variables are
treated on the equal footing as a multidimensional
analogue of the time parameter in mechanics.
This Hamiltonization is known in the calculus of
variations as the De Donder–Weyl (DW) theory
(see e.g. [1]).

2. DW Hamiltonization

For a Lagrangian density L = L(ya, yaµ, x
ν),

which is a function of the fields variables ya, their
first space-time derivatives yaµ, and the space-
time variables xµ, one defines the polymomenta:
pµa := ∂L

∂yaµ
, and the DW Hamiltonian function:
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H(ya, pµa , xµ) := yaµ(y, p)p
µ
a − L. Then, in the

regular case det(∂2L/∂yaµ∂y
b
ν) 6= 0, the Euler-

Lagrange field equations can be written in the DW

Hamiltonian form:

∂µy
a(x) = ∂H/∂pµa ,

∂µp
µ
a(x) = −∂H/∂ya,

(1)

which requires neither a splitting into the space
and time nor infinite-dimensional spaces of
field configurations. Here the analogue of the
extended configuration space is the space of field
variables ya and space-time variables xµ, and the
analogue of the extended phase space is a finite
dimensional space of pµa , ya and xµ. Classical fields
are sections in the corresponding bundles over the
space-time.

3. DW theory and precanonical

quantization

Field quantization based on the above
Hamiltonization uses the mathematical structures
of DW Hamiltonian formalism which were found
in our earlier papers [2]. The polysymplectic

form on the polymomentum phase space: Ω :=
dpµa ∧ dya ∧ ̟µ where ̟µ := ∂µ ̟ and
̟ := dx1 ∧ ... ∧ dxn is the volume form on n-
dimensional space-time, leads to the definition
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of Poisson brackets on forms of different degrees
p and q which represent dynamical variables:

{[
p

F 1,
q

F 2 ]} = (−)(n−p)
n−p

X 1 d
q

F 2 where
n−p

X is a
Hamiltonian multivector field related to the p-

form
p

F via the map:
n−p

X Ω = d
p

F , p =
0, 1, ..., (n − 1). The space of forms for which
this map exists is closed with respect to the

•-product:
p

F •
q

F := ∗−1(∗
p

F ∧ ∗
q

F ), and the
bracket operation equips it with the structure of
the Gerstenhaber algebra, which appears here as a
generalization of the Poisson algebra structure to
the DW Hamiltonian formulation. Precanonical
quantization relies on the fundamental brackets
[2,3]:

{[pµa̟µ, y
b ]} = δba,

{[pµa̟µ, y
b̟ν ]} = δba̟ν , (1a, b, c)

{[pµa , y
b̟ν ]} = δbaδ

µ
ν .

Their quantization leads to the
representation of polymomenta and (n−1)-forms
̟µ as Clifford-valued operators [3]:

p̂νa = −i~κγν
∂

∂ya
, ̟̂ ν =

1

κ
γν (3a, b)

where the parameter 1
κ

appears on the
dimensional grounds as a very small quantity
of the dimension of (n − 1)-volume;
one could dub it a quantum of space.

The precanonical analogue of the
Schrödinger equation [3, 4]:

i~κγµ∂µΨ = ĤΨ (4)

where Ĥ is the operator of DW Hamiltonian and
Ψ(ya, xµ) is a Clifford-valued wave function, is
suggested by the fact that the DW Hamiltonian
equations can be written in terms of the bracket of
the fundamental variables in (3) with H [2], which
will generate their total co-exterior differential
[3,4] (similarly to the generation of the total
time derivative by the Poisson bracket with

the Hamilton’s function in mechanics). We can
also argue [3] that Eq. (4) allows us to obtain
the classical field equations in DW form as
the equations for the expectation values of
the corresponding precanonical operators, and
to reproduce the Hamilton- Jacobi equation
of DW theory [1] in the classical limit.
The scalar product is related to the conservation
law of Eq. (4): ∂µ

∫
dyTr

[
ΨγµΨ

]
= 0 where

Ψ := γ0Ψ†γ0.
When applied to the scalar field theory [3]

with L = 1
2∂µy∂

µy − V (y), we obtain Ĥ =

−1
2~

2κ2 ∂2

∂y2
+ V (y). For the free field theory

with V (y) = 1
2
m2

~2
y2 the spectrum of normal

ordered 1
κ
Ĥ reproduces the mass spectrum of free

particles: mN where N is the quantum number of
Ĥ. By writing Eq. (4) in the form i~∂µΨ = P̂µΨ

and defining ŷ(x) := eiP̂νxν
y e−iP̂νxν

, we can
derive the standard correlators of ŷ(x) from the
precanonical theory [5].

4. Standard QFT as a limiting case

The comparison of probabilistic
interpretations of precanonical Ψ(y, x) and
the canonical Schrödinger wave functional
Ψ([y(x)], t), and the corresponding equations,
allows us to establish a relation between them
[6] in terms of the Volterra’s multidimensional
product integral [7]:

Ψ = Tr

{∏

x

e−iy(x)αi∂iy(x)dxΨΣ(y(x),x, t)| 1
κ

β 7→dx

}

(5)

where ΨΣ(y(x),x, t) is the restriction of Ψ(y, x)
to the subspace Σ: (y = y(x), x0 = t), and
the notation ΨΣ| 1

κ
β 7→dx

means that every β/κ

in the expression of Ψ is replaced by dx before
the product integral is evaluated. In [6b] it is
explicitly demonstrated how this product integral
formula leads to the vacuum state wave functional
of free scalar field from the ground state
solution of precanonical Schrödinger equation.
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The formula (5) also tells us that the standard
QFT obtained from canonical quantization is
a limiting case of vanishing 1

κ
of the theory

obtained from precanonical quantization. To be
more precise, the limiting transition involves the
inverse of the quantization map in Eq. (3b) at
ν = 0: β

κ
7→ dx, that implies an infinitesimal

quantum of space 1
κ
.

5. Precanonical quantization of

gravity

While precanonical quantization of metric
gravity was discussed by us earlier [8], the
appearance of the Dirac operator in Eq. (4) makes
the vielbein formulation of general relativity
a preferable starting point for precanonical
quantization. Here the Lagrangian density

L = 1
κE

ee
[α
I e

β]
J

(
∂αωβ

IJ + ωα
IKωβK

J
)

+ 1
κE

Λe
(6)

with the vielbein components eµI , the torsion-free
spin-connection coefficients ωIJ

α , the Einstein’s
gravitational constant κE := 8πG, and
e := det ||eIµ|| leads to the singular DW
Hamiltonization with the primary constraints

pα
eI
β

:=
∂L

∂αeIβ
≈ 0 ,

pα
ωIJ
β

:=
∂L

∂αωIJ
β

≈ 1
κE

ee
[α
I e

β]
J .

(7)

We use our generalization of Dirac’s
approach to constrained systems and the Dirac
bracket to singular DW theories [9]. The Poisson
brackets of (n − 1)-forms constructed from the
constraints:

CeI
β
:= pα

eI
β

̟α ,

CωIJ
β

:= pα
ωIJ
β

̟α − 1
κE

ee
[α
I e

β]
J ̟α,

(8)

{[Ce,Ce′ ]} = 0 ,

{[Cω,Cω′ ]} = 0 ,

{[CeKγ
,CωIJ

β
]} = −

1

κE

∂

∂eKγ

(
ee

[α
I e

β]
J

)
̟α ,

(9)

indicate that the primary constraints of DW
formulation are second class. Using our
generalization of the Dirac bracket to DW theory
we were able to show [10] that the Dirac brackets
between the vielbeins and their polymomenta
vanish, e.g. {[pαe̟α, e

′ ]}D = 0, and the Dirac
brackets between the spin connection coefficients
and their polymomenta are the same as if there
were no constraints, e.g. {[pαω̟α, ω

′ ]}D = δω
′

ω .
This fact simplifies quantization performed in [10]
using the generalized Dirac’s quantization rule:

[Â, B̂] = −i~ ̂e{[A,B]}D where the operator of e

ensures that tensor densities are quantized as
density-valued operators.

From quantization of fundamental Dirac
brackets and using the the equations of
constraints (7) we conclude that the
precanonical wave function does not depend
on vielbein variables, i.e. Ψ = Ψ(ωIJ

α , xµ),
and obtain a represenation of the opera-
tors of vielbeins: êβI = −i~κκE γ̄

J ∂
∂ωIJ

β

,

and the polymomenta of spin-connection:
p̂α
ωIJ
β

= −~2κ2κ
E
ê γ̄KL ∂

∂ωKL
[α

∂
∂ωIJ

β]

where γ̄J are

the fiducial Minkowskian Dirac matrices and

ê =
(

1
n!ǫ

I1...Inǫµ1...µn ê
µ1

I1
...êµn

In

)−1
. This allows us

to construct the operator of DW Hamiltonian
density eH restricted to the constraints surface
C: (eH)|C = −pα

ωIJ
β

ωIK
α ωβK

J − 1
κE

Λe, which is

derived from Eq. (6), so that

Ĥ = ~
2
κ
2κE γ̄

IJω[α
KMωβ]M

L ∂

∂ωIJ
α

∂

∂ωKL
β

−
1

κE
Λ,

(10)

and to obtain the covariant precanonical analogue
of the Schrödinger equation for quantum gravity:

i~κ /̂∇Ψ = ĤΨ (11)
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where /̂∇ := γ̂µ(∂µ + 1
4ωµIJ γ̄

IJ), in the explicit
form:

γ̄IJ
(
∂µ +

1

4
ωµKLγ̄

KL − ωK
µMωML

β

∂

∂ωKL
β

)

×
∂

∂ωIJ
µ

Ψ+ λΨ = 0

(12)

λ := Λ/(~2κ2κ2E) is a dimensionless constant.
The Hilbert space of the theory is defined

by the scalar product with the operator-valued
invariant measure on the space of spin-connection
coefficients:

〈Φ|Ψ〉 := Tr

∫
Φ [̂dω]Ψ,

[̂dω] = ê−n(n−1)
∏

µ,I<J

dωIJ
µ ,

(13)

which is obtained using the arguments similar to
those in [11]. It is interesting to note that the
normalizability of precanonical wave functions
actually implies the quantum singularity
avoidance, because Ψ should vanish at large ω-s,
i.e. at large space-time curvatures.

Note that the potential issues related to the
indefiniteness of Tr[ΨΨ] and the gauge fixing,
i.e. the choice of the coordinate systems and
local orientations of vielbeins on the average,
when extracting a physical information from the
solutions of (11), are not yet sufficiently clarified.

The Green functions of Eq. (12):
〈ω, x|ω′, x′〉, which are the transition amplitudes
from the values of the spin-connection
components ω′ at the point x′ to the values
ω at the point x, provide an inherently quantum
description of space-time geometry, which
generalizes the classical description of geometry
in terms of smooth spin-connection fields ω(x).
Besides, the distances between points are given
by quantum operators, because the metric tensor
in the present formulation is operator-valued:
ĝµν = −~2κ2κ2Eη

IJηKL ∂2

∂ωIK
µ ∂ωJL

ν
. This type

of description of quantum geometry of space-
time in terms of the transition amplitudes
on the connection bundle and the operator-
valued metric structure on the space-time
complements the current intuitive ideas about
the quantum space-time suggested by quantum
geometrodynamics, loop quantum gravity, string
theory and non-commutative geometry.

The fact that all dimensionful constants
in Eq. (11) are absorbed in one dimensionless
constant λ, which depends on the ordering of
operators ω and ∂ω, seems to be important.
Knowing λ we would be able to determine the
value of our constant κ. A naive estimation yields
λ ∼ n6 and then κ at n = 4 is at the nuclear
scale, which is unexpected. If, however, we assume
that κ is Planckian, then the estimated value of
Λ is ∼ 10120 times higher than the observable
one, which is a usual problem in naive QFT-
based estimations of Λ. This coincidence confirms
that κ of precanonical quantization is related to
the ultra-violet cutoff scale in standard QFT and
indicates that the cosmological constant is not
likely to be related to the ground state of pure
quantum gravity alone.

6. Precanonical quantum

cosmology

For n=4 flat FLRW metric with a harmonic
time τ :

ds2 = a(τ)6dτ2 − a(τ)2dx2, (14)

let us choose e0ν = a3δ0ν , eIν = aδIν , so that
ωI0
ν = ȧ/2a3δIν =: ωδIν (I = 1, 2, 3). Then

the precanonical Schrödinger equation, Eq. (12),
takes the form

(
2

3∑

i=I=1

γ0I∂ω∂i + 3ω∂ω + c
)
Ψ = 0 (15)

where, if ω∂ω is Weyl-ordered, c = 3
2 +

Λ
(ℏκκE)2

is the effective cosmological constant. By

separation of variables Ψ := u(x)f(ω) we obtain:
2
∑3

i=I=1 γ
0I∂iu = iqu, and (iq∂ω + 3ω∂ω +
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c)f = 0. The solution of the latter: f ∼
(3ω + iq)−c/3, yields the probability density

ρ(ω) := f̄f ∼
1

(9ω2 + q̄q)c/3
. (16)

One can either interpret it as a distribution of
quantum universes according to the value of ω =
ȧ/2a3, i.e. essentially the expansion rate ȧ, or as
a spatially homogeneous distribution function of
quantum fluctuations of the random cosmological
spin-connection field ω. The possibility of the
latter point of view within the precanonical
approach makes the usual interpretational issues
of quantum cosmology much less troublesome.

Note that our discussion is based on a toy
quantum cosmology model where no influence of

matter fields is taken into account so far. It would
be interesting to investigate if the probability
distribution of spin connection (15) predicted by
precanonical quantum gravity theory manifests
itself in the large scale structures in the universe
and can be tested by cosmological observations.
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